Normalized defining polynomial
\( x^{12} + 102 x^{10} - 52 x^{9} + 8703 x^{8} + 3198 x^{7} + 471412 x^{6} + 83538 x^{5} + 17475255 x^{4} + 13489866 x^{3} + 462875499 x^{2} + 458844750 x + 5314031919 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(218764100914962817683456000000=2^{18}\cdot 3^{18}\cdot 5^{6}\cdot 13^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $278.61$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4680=2^{3}\cdot 3^{2}\cdot 5\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4680}(1921,·)$, $\chi_{4680}(1829,·)$, $\chi_{4680}(1,·)$, $\chi_{4680}(4469,·)$, $\chi_{4680}(3721,·)$, $\chi_{4680}(2401,·)$, $\chi_{4680}(1681,·)$, $\chi_{4680}(1589,·)$, $\chi_{4680}(2521,·)$, $\chi_{4680}(989,·)$, $\chi_{4680}(1109,·)$, $\chi_{4680}(3509,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{3} a^{5} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{6} + \frac{1}{3} a^{3}$, $\frac{1}{3} a^{7} + \frac{1}{3} a^{4}$, $\frac{1}{69} a^{8} - \frac{10}{69} a^{7} + \frac{1}{69} a^{6} + \frac{10}{69} a^{5} + \frac{5}{69} a^{4} + \frac{4}{69} a^{3} + \frac{11}{23} a^{2} + \frac{4}{23} a - \frac{11}{23}$, $\frac{1}{207} a^{9} - \frac{1}{207} a^{8} - \frac{20}{207} a^{7} + \frac{19}{207} a^{6} + \frac{26}{207} a^{5} - \frac{89}{207} a^{4} + \frac{1}{3} a^{3} + \frac{34}{69} a^{2} - \frac{7}{23} a - \frac{10}{23}$, $\frac{1}{1433061} a^{10} + \frac{880}{477687} a^{9} + \frac{265}{159229} a^{8} + \frac{185159}{1433061} a^{7} - \frac{8489}{159229} a^{6} + \frac{5041}{477687} a^{5} - \frac{35987}{204723} a^{4} - \frac{959}{2967} a^{3} + \frac{31321}{68241} a^{2} + \frac{1847}{159229} a + \frac{9454}{22747}$, $\frac{1}{53871028522932843998846171577} a^{11} + \frac{252733845958113662426}{53871028522932843998846171577} a^{10} - \frac{44821370373961878313588642}{53871028522932843998846171577} a^{9} - \frac{111044286916753626573124378}{17957009507644281332948723859} a^{8} - \frac{350108121410969537228931740}{5985669835881427110982907953} a^{7} + \frac{8974683878128728669381860417}{53871028522932843998846171577} a^{6} - \frac{8618484834916796081235799741}{53871028522932843998846171577} a^{5} - \frac{1540332616856404851215797439}{7695861217561834856978024511} a^{4} + \frac{188287552211777354718184836}{855095690840203872997558279} a^{3} + \frac{1940453979822139800784132952}{17957009507644281332948723859} a^{2} - \frac{1466605362172215752736328236}{5985669835881427110982907953} a + \frac{548031844592178179810362}{3327220586926863319056647}$
Class group and class number
$C_{2}\times C_{30}\times C_{21720}$, which has order $1303200$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 9116.238746847283 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_6$ (as 12T2):
| An abelian group of order 12 |
| The 12 conjugacy class representatives for $C_6\times C_2$ |
| Character table for $C_6\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{-30}) \), \(\Q(\sqrt{-390}) \), \(\Q(\sqrt{13}) \), 3.3.13689.2, \(\Q(\sqrt{13}, \sqrt{-30})\), 6.0.35978634432000.4, 6.0.467722247616000.1, 6.6.2436053373.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}$ | R | ${\href{/LocalNumberField/17.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/23.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/43.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.12.18.23 | $x^{12} + 52 x^{10} - 28 x^{8} + 8 x^{6} + 64 x^{4} - 32 x^{2} + 64$ | $2$ | $6$ | $18$ | $C_6\times C_2$ | $[3]^{6}$ |
| $3$ | 3.6.9.9 | $x^{6} + 6 x^{4} + 21$ | $6$ | $1$ | $9$ | $C_6$ | $[2]_{2}$ |
| 3.6.9.9 | $x^{6} + 6 x^{4} + 21$ | $6$ | $1$ | $9$ | $C_6$ | $[2]_{2}$ | |
| $5$ | 5.12.6.1 | $x^{12} + 500 x^{6} - 3125 x^{2} + 62500$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |
| $13$ | 13.6.5.1 | $x^{6} - 52$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |
| 13.6.5.1 | $x^{6} - 52$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |