Normalized defining polynomial
\( x^{12} - 4 x^{11} + 283 x^{10} - 926 x^{9} + 32574 x^{8} - 84412 x^{7} + 1935477 x^{6} - 3748466 x^{5} + 62575025 x^{4} - 81302524 x^{3} + 1065197590 x^{2} - 709042578 x + 7573971901 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2169681134677448000000000=2^{12}\cdot 5^{9}\cdot 7^{8}\cdot 19^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $106.67$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 7, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(2660=2^{2}\cdot 5\cdot 7\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{2660}(1,·)$, $\chi_{2660}(1443,·)$, $\chi_{2660}(2129,·)$, $\chi_{2660}(683,·)$, $\chi_{2660}(1901,·)$, $\chi_{2660}(303,·)$, $\chi_{2660}(1521,·)$, $\chi_{2660}(1747,·)$, $\chi_{2660}(1367,·)$, $\chi_{2660}(1369,·)$, $\chi_{2660}(989,·)$, $\chi_{2660}(2507,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{19} a^{6} - \frac{2}{19} a^{5} - \frac{3}{19} a^{4} + \frac{6}{19} a^{3} + \frac{2}{19} a^{2} - \frac{4}{19} a + \frac{1}{19}$, $\frac{1}{19} a^{7} - \frac{7}{19} a^{5} - \frac{5}{19} a^{3} - \frac{7}{19} a + \frac{2}{19}$, $\frac{1}{19} a^{8} + \frac{5}{19} a^{5} - \frac{7}{19} a^{4} + \frac{4}{19} a^{3} + \frac{7}{19} a^{2} - \frac{7}{19} a + \frac{7}{19}$, $\frac{1}{19} a^{9} + \frac{3}{19} a^{5} - \frac{4}{19} a^{3} + \frac{2}{19} a^{2} + \frac{8}{19} a - \frac{5}{19}$, $\frac{1}{353537829059} a^{10} + \frac{5707499532}{353537829059} a^{9} - \frac{3587687085}{353537829059} a^{8} + \frac{695522678}{353537829059} a^{7} - \frac{6072870191}{353537829059} a^{6} + \frac{154379928530}{353537829059} a^{5} + \frac{119820005127}{353537829059} a^{4} - \frac{15830530199}{353537829059} a^{3} + \frac{172234599430}{353537829059} a^{2} + \frac{82183816415}{353537829059} a - \frac{2015447223}{18607254161}$, $\frac{1}{10188774541094629674139559} a^{11} - \frac{626896787474}{10188774541094629674139559} a^{10} + \frac{34753355723068176291204}{10188774541094629674139559} a^{9} - \frac{79801988682279649509520}{10188774541094629674139559} a^{8} - \frac{53615051977602558090071}{10188774541094629674139559} a^{7} + \frac{90625568017827390015448}{10188774541094629674139559} a^{6} - \frac{23512441571045528714796}{536251291636559456533661} a^{5} - \frac{3296657991001717769656515}{10188774541094629674139559} a^{4} - \frac{3132890309848291848606046}{10188774541094629674139559} a^{3} - \frac{4470892829520868639395614}{10188774541094629674139559} a^{2} + \frac{2850997497215183186137996}{10188774541094629674139559} a - \frac{1965742524934995733181193}{10188774541094629674139559}$
Class group and class number
$C_{2}\times C_{2}\times C_{25012}$, which has order $100048$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 104.882003477 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 12 |
| The 12 conjugacy class representatives for $C_{12}$ |
| Character table for $C_{12}$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{7})^+\), 4.0.722000.3, 6.6.300125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.12.0.1}{12} }$ | R | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }$ | R | ${\href{/LocalNumberField/23.12.0.1}{12} }$ | ${\href{/LocalNumberField/29.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }$ | ${\href{/LocalNumberField/53.12.0.1}{12} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.12.12.25 | $x^{12} - 78 x^{10} - 1621 x^{8} + 460 x^{6} - 1977 x^{4} + 866 x^{2} + 749$ | $2$ | $6$ | $12$ | $C_{12}$ | $[2]^{6}$ |
| $5$ | 5.12.9.2 | $x^{12} - 10 x^{8} + 25 x^{4} - 500$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ |
| $7$ | 7.12.8.1 | $x^{12} - 63 x^{9} + 637 x^{6} + 6174 x^{3} + 300125$ | $3$ | $4$ | $8$ | $C_{12}$ | $[\ ]_{3}^{4}$ |
| $19$ | 19.6.3.2 | $x^{6} - 361 x^{2} + 27436$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 19.6.3.2 | $x^{6} - 361 x^{2} + 27436$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |