Normalized defining polynomial
\( x^{12} - 4 x^{11} + 88 x^{10} - 276 x^{9} + 3259 x^{8} - 7972 x^{7} + 64062 x^{6} - 116656 x^{5} + 705880 x^{4} - 876724 x^{3} + 4423460 x^{2} - 2965388 x + 12267361 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2151700443648000000000=2^{18}\cdot 3^{6}\cdot 5^{9}\cdot 7^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $59.94$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(840=2^{3}\cdot 3\cdot 5\cdot 7\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{840}(1,·)$, $\chi_{840}(323,·)$, $\chi_{840}(289,·)$, $\chi_{840}(169,·)$, $\chi_{840}(683,·)$, $\chi_{840}(827,·)$, $\chi_{840}(529,·)$, $\chi_{840}(107,·)$, $\chi_{840}(361,·)$, $\chi_{840}(121,·)$, $\chi_{840}(347,·)$, $\chi_{840}(443,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{6} a^{6} - \frac{1}{3} a^{5} - \frac{1}{2} a^{4} + \frac{1}{3} a^{2} + \frac{1}{3} a + \frac{1}{6}$, $\frac{1}{6} a^{7} - \frac{1}{6} a^{5} + \frac{1}{3} a^{3} - \frac{1}{6} a + \frac{1}{3}$, $\frac{1}{6} a^{8} - \frac{1}{3} a^{5} - \frac{1}{6} a^{4} + \frac{1}{6} a^{2} - \frac{1}{3} a + \frac{1}{6}$, $\frac{1}{6} a^{9} + \frac{1}{6} a^{5} + \frac{1}{6} a^{3} + \frac{1}{3} a^{2} - \frac{1}{6} a + \frac{1}{3}$, $\frac{1}{523090086} a^{10} - \frac{7784673}{174363362} a^{9} + \frac{4010603}{87181681} a^{8} - \frac{6887283}{174363362} a^{7} - \frac{25129711}{523090086} a^{6} + \frac{19144715}{261545043} a^{5} + \frac{112177363}{523090086} a^{4} - \frac{54857551}{523090086} a^{3} - \frac{37048355}{523090086} a^{2} + \frac{33284309}{261545043} a - \frac{115934053}{261545043}$, $\frac{1}{21421337278617929526} a^{11} + \frac{8513813668}{10710668639308964763} a^{10} - \frac{231075758704265237}{21421337278617929526} a^{9} - \frac{368855657260611278}{10710668639308964763} a^{8} + \frac{86804426530010599}{10710668639308964763} a^{7} + \frac{538468455804252221}{7140445759539309842} a^{6} - \frac{9917832233446320899}{21421337278617929526} a^{5} - \frac{4516793539104128107}{21421337278617929526} a^{4} - \frac{465417604888436825}{3570222879769654921} a^{3} - \frac{1064866043047275032}{3570222879769654921} a^{2} + \frac{917999379264084012}{3570222879769654921} a + \frac{5546327631166434523}{21421337278617929526}$
Class group and class number
$C_{2}\times C_{962}$, which has order $1924$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 104.882003477 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 12 |
| The 12 conjugacy class representatives for $C_{12}$ |
| Character table for $C_{12}$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{7})^+\), 4.0.72000.2, 6.6.300125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/23.12.0.1}{12} }$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }$ | ${\href{/LocalNumberField/53.12.0.1}{12} }$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.12.18.27 | $x^{12} - 156 x^{10} + 9900 x^{8} - 61856 x^{6} + 33904 x^{4} + 27712 x^{2} + 47936$ | $2$ | $6$ | $18$ | $C_{12}$ | $[3]^{6}$ |
| $3$ | 3.12.6.1 | $x^{12} - 243 x^{2} + 1458$ | $2$ | $6$ | $6$ | $C_{12}$ | $[\ ]_{2}^{6}$ |
| $5$ | 5.12.9.2 | $x^{12} - 10 x^{8} + 25 x^{4} - 500$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ |
| $7$ | 7.12.8.1 | $x^{12} - 63 x^{9} + 637 x^{6} + 6174 x^{3} + 300125$ | $3$ | $4$ | $8$ | $C_{12}$ | $[\ ]_{3}^{4}$ |