Properties

Label 12.0.21383891412...0000.1
Degree $12$
Signature $[0, 6]$
Discriminant $2^{24}\cdot 5^{6}\cdot 13^{8}$
Root discriminant $49.45$
Ramified primes $2, 5, 13$
Class number $68$
Class group $[2, 34]$
Galois group $C_2\times C_4^2:C_3$ (as 12T55)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![25, 0, 1200, 0, 2420, 0, 1460, 0, 323, 0, 30, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^12 + 30*x^10 + 323*x^8 + 1460*x^6 + 2420*x^4 + 1200*x^2 + 25)
 
gp: K = bnfinit(x^12 + 30*x^10 + 323*x^8 + 1460*x^6 + 2420*x^4 + 1200*x^2 + 25, 1)
 

Normalized defining polynomial

\( x^{12} + 30 x^{10} + 323 x^{8} + 1460 x^{6} + 2420 x^{4} + 1200 x^{2} + 25 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $12$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(213838914125824000000=2^{24}\cdot 5^{6}\cdot 13^{8}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $49.45$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 13$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{13} a^{6} + \frac{2}{13} a^{4} - \frac{3}{13} a^{2} - \frac{5}{13}$, $\frac{1}{13} a^{7} + \frac{2}{13} a^{5} - \frac{3}{13} a^{3} - \frac{5}{13} a$, $\frac{1}{65} a^{8} - \frac{7}{65} a^{4} - \frac{5}{13} a^{2} + \frac{2}{13}$, $\frac{1}{65} a^{9} - \frac{7}{65} a^{5} - \frac{5}{13} a^{3} + \frac{2}{13} a$, $\frac{1}{65} a^{10} - \frac{2}{65} a^{6} - \frac{3}{13} a^{4} - \frac{1}{13} a^{2} - \frac{5}{13}$, $\frac{1}{65} a^{11} - \frac{2}{65} a^{7} - \frac{3}{13} a^{5} - \frac{1}{13} a^{3} - \frac{5}{13} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{34}$, which has order $68$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $5$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 2476.15807259 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2\times C_4^2:C_3$ (as 12T55):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 96
The 16 conjugacy class representatives for $C_2\times C_4^2:C_3$
Character table for $C_2\times C_4^2:C_3$

Intermediate fields

3.3.169.1, 6.6.45697600.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 12 sibling: data not computed
Degree 24 siblings: data not computed
Degree 32 sibling: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.3.0.1}{3} }^{4}$ R ${\href{/LocalNumberField/7.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}$ R ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/23.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/29.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/41.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/43.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.12.24.306$x^{12} - 4 x^{11} + 16 x^{10} + 20 x^{9} - 14 x^{8} + 32 x^{7} + 4 x^{6} + 16 x^{5} + 16 x^{4} + 32 x^{3} - 16 x^{2} - 16 x + 24$$4$$3$$24$12T55$[2, 2, 2, 3, 3]^{3}$
$5$5.4.0.1$x^{4} + x^{2} - 2 x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
5.4.3.3$x^{4} + 10$$4$$1$$3$$C_4$$[\ ]_{4}$
5.4.3.2$x^{4} - 20$$4$$1$$3$$C_4$$[\ ]_{4}$
$13$13.6.4.3$x^{6} + 65 x^{3} + 1352$$3$$2$$4$$C_6$$[\ ]_{3}^{2}$
13.6.4.3$x^{6} + 65 x^{3} + 1352$$3$$2$$4$$C_6$$[\ ]_{3}^{2}$