Properties

Label 12.0.21347865140625.1
Degree $12$
Signature $[0, 6]$
Discriminant $2.135\times 10^{13}$
Root discriminant \(12.91\)
Ramified primes $3,5,37$
Class number $1$
Class group trivial
Galois group $C_6\times S_3$ (as 12T18)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^12 - 3*x^11 + 3*x^10 + 4*x^9 - 16*x^8 - 10*x^7 + 32*x^6 + 61*x^5 + 44*x^4 + 4*x^3 - 10*x^2 - 2*x + 1)
 
gp: K = bnfinit(y^12 - 3*y^11 + 3*y^10 + 4*y^9 - 16*y^8 - 10*y^7 + 32*y^6 + 61*y^5 + 44*y^4 + 4*y^3 - 10*y^2 - 2*y + 1, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^12 - 3*x^11 + 3*x^10 + 4*x^9 - 16*x^8 - 10*x^7 + 32*x^6 + 61*x^5 + 44*x^4 + 4*x^3 - 10*x^2 - 2*x + 1);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^12 - 3*x^11 + 3*x^10 + 4*x^9 - 16*x^8 - 10*x^7 + 32*x^6 + 61*x^5 + 44*x^4 + 4*x^3 - 10*x^2 - 2*x + 1)
 

\( x^{12} - 3 x^{11} + 3 x^{10} + 4 x^{9} - 16 x^{8} - 10 x^{7} + 32 x^{6} + 61 x^{5} + 44 x^{4} + 4 x^{3} + \cdots + 1 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $12$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 6]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(21347865140625\) \(\medspace = 3^{6}\cdot 5^{6}\cdot 37^{4}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(12.91\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $3^{1/2}5^{1/2}37^{2/3}\approx 43.004454742078806$
Ramified primes:   \(3\), \(5\), \(37\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Aut(K/\Q) }$:  $6$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{34997}a^{11}-\frac{8762}{34997}a^{10}-\frac{2060}{34997}a^{9}-\frac{14908}{34997}a^{8}+\frac{5349}{34997}a^{7}+\frac{9082}{34997}a^{6}-\frac{1025}{34997}a^{5}-\frac{16193}{34997}a^{4}-\frac{8310}{34997}a^{3}-\frac{6466}{34997}a^{2}+\frac{10538}{34997}a-\frac{15255}{34997}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $5$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( \frac{1647}{443} a^{11} - \frac{6491}{443} a^{10} + \frac{10749}{443} a^{9} - \frac{2416}{443} a^{8} - \frac{25832}{443} a^{7} + \frac{8133}{443} a^{6} + \frac{49271}{443} a^{5} + \frac{54104}{443} a^{4} + \frac{13205}{443} a^{3} - \frac{18388}{443} a^{2} - \frac{5970}{443} a + \frac{2861}{443} \)  (order $6$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{27501}{34997}a^{11}-\frac{114408}{34997}a^{10}+\frac{183068}{34997}a^{9}+\frac{4947}{34997}a^{8}-\frac{584491}{34997}a^{7}+\frac{340463}{34997}a^{6}+\frac{998973}{34997}a^{5}+\frac{643078}{34997}a^{4}-\frac{492858}{34997}a^{3}-\frac{946628}{34997}a^{2}-\frac{214601}{34997}a+\frac{121272}{34997}$, $\frac{67615}{34997}a^{11}-\frac{258393}{34997}a^{10}+\frac{421124}{34997}a^{9}-\frac{90820}{34997}a^{8}-\frac{1001276}{34997}a^{7}+\frac{197053}{34997}a^{6}+\frac{1878523}{34997}a^{5}+\frac{2511234}{34997}a^{4}+\frac{1116089}{34997}a^{3}-\frac{226048}{34997}a^{2}-\frac{152038}{34997}a+\frac{34753}{34997}$, $\frac{39157}{34997}a^{11}-\frac{158031}{34997}a^{10}+\frac{284641}{34997}a^{9}-\frac{142584}{34997}a^{8}-\frac{496210}{34997}a^{7}+\frac{194342}{34997}a^{6}+\frac{950553}{34997}a^{5}+\frac{1301234}{34997}a^{4}+\frac{567388}{34997}a^{3}-\frac{90858}{34997}a^{2}-\frac{48158}{34997}a-\frac{46236}{34997}$, $\frac{57175}{34997}a^{11}-\frac{195277}{34997}a^{10}+\frac{229384}{34997}a^{9}+\frac{232014}{34997}a^{8}-\frac{1199606}{34997}a^{7}+\frac{47858}{34997}a^{6}+\frac{2080423}{34997}a^{5}+\frac{2460650}{34997}a^{4}+\frac{939941}{34997}a^{3}-\frac{825170}{34997}a^{2}-\frac{383169}{34997}a+\frac{165594}{34997}$, $\frac{119118}{34997}a^{11}-\frac{451346}{34997}a^{10}+\frac{715824}{34997}a^{9}-\frac{98361}{34997}a^{8}-\frac{1813044}{34997}a^{7}+\frac{247391}{34997}a^{6}+\frac{3543280}{34997}a^{5}+\frac{4531491}{34997}a^{4}+\frac{1769415}{34997}a^{3}-\frac{947931}{34997}a^{2}-\frac{496870}{34997}a+\frac{144129}{34997}$ Copy content Toggle raw display
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 71.67111211927603 \)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{6}\cdot 71.67111211927603 \cdot 1}{6\cdot\sqrt{21347865140625}}\cr\approx \mathstrut & 0.159072416261730 \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^12 - 3*x^11 + 3*x^10 + 4*x^9 - 16*x^8 - 10*x^7 + 32*x^6 + 61*x^5 + 44*x^4 + 4*x^3 - 10*x^2 - 2*x + 1)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^12 - 3*x^11 + 3*x^10 + 4*x^9 - 16*x^8 - 10*x^7 + 32*x^6 + 61*x^5 + 44*x^4 + 4*x^3 - 10*x^2 - 2*x + 1, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^12 - 3*x^11 + 3*x^10 + 4*x^9 - 16*x^8 - 10*x^7 + 32*x^6 + 61*x^5 + 44*x^4 + 4*x^3 - 10*x^2 - 2*x + 1);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^12 - 3*x^11 + 3*x^10 + 4*x^9 - 16*x^8 - 10*x^7 + 32*x^6 + 61*x^5 + 44*x^4 + 4*x^3 - 10*x^2 - 2*x + 1);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_6\times S_3$ (as 12T18):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 36
The 18 conjugacy class representatives for $C_6\times S_3$
Character table for $C_6\times S_3$

Intermediate fields

\(\Q(\sqrt{-15}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-3}, \sqrt{5})\), 6.0.36963.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Galois closure: deg 36
Degree 18 siblings: 18.6.9372992211440206484080078125.1, 18.0.253070789708885575070162109375.1
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.6.0.1}{6} }^{2}$ R R ${\href{/padicField/7.6.0.1}{6} }{,}\,{\href{/padicField/7.2.0.1}{2} }^{3}$ ${\href{/padicField/11.2.0.1}{2} }^{6}$ ${\href{/padicField/13.6.0.1}{6} }{,}\,{\href{/padicField/13.2.0.1}{2} }^{3}$ ${\href{/padicField/17.6.0.1}{6} }^{2}$ ${\href{/padicField/19.3.0.1}{3} }^{4}$ ${\href{/padicField/23.2.0.1}{2} }^{6}$ ${\href{/padicField/29.2.0.1}{2} }^{6}$ ${\href{/padicField/31.3.0.1}{3} }^{4}$ R ${\href{/padicField/41.6.0.1}{6} }^{2}$ ${\href{/padicField/43.6.0.1}{6} }^{2}$ ${\href{/padicField/47.2.0.1}{2} }^{6}$ ${\href{/padicField/53.6.0.1}{6} }^{2}$ ${\href{/padicField/59.6.0.1}{6} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(3\) Copy content Toggle raw display 3.12.6.2$x^{12} + 22 x^{10} + 177 x^{8} + 4 x^{7} + 644 x^{6} - 100 x^{5} + 876 x^{4} - 224 x^{3} + 1076 x^{2} + 344 x + 112$$2$$6$$6$$C_6\times C_2$$[\ ]_{2}^{6}$
\(5\) Copy content Toggle raw display 5.12.6.1$x^{12} + 120 x^{11} + 6032 x^{10} + 163208 x^{9} + 2529528 x^{8} + 21853448 x^{7} + 92223962 x^{6} + 138649448 x^{5} + 223472880 x^{4} + 401794296 x^{3} + 295909124 x^{2} + 118616440 x + 126881009$$2$$6$$6$$C_6\times C_2$$[\ ]_{2}^{6}$
\(37\) Copy content Toggle raw display 37.2.0.1$x^{2} + 33 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
37.2.0.1$x^{2} + 33 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
37.2.0.1$x^{2} + 33 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
37.6.4.1$x^{6} + 99 x^{5} + 3273 x^{4} + 36407 x^{3} + 10209 x^{2} + 120831 x + 1323720$$3$$2$$4$$C_6$$[\ ]_{3}^{2}$

Artin representations

Label Dimension Conductor Artin stem field $G$ Ind $\chi(c)$
* 1.1.1t1.a.a$1$ $1$ \(\Q\) $C_1$ $1$ $1$
* 1.5.2t1.a.a$1$ $ 5 $ \(\Q(\sqrt{5}) \) $C_2$ (as 2T1) $1$ $1$
* 1.3.2t1.a.a$1$ $ 3 $ \(\Q(\sqrt{-3}) \) $C_2$ (as 2T1) $1$ $-1$
* 1.15.2t1.a.a$1$ $ 3 \cdot 5 $ \(\Q(\sqrt{-15}) \) $C_2$ (as 2T1) $1$ $-1$
1.555.6t1.a.a$1$ $ 3 \cdot 5 \cdot 37 $ 6.0.6325293375.1 $C_6$ (as 6T1) $0$ $-1$
1.185.6t1.b.a$1$ $ 5 \cdot 37 $ 6.6.234270125.1 $C_6$ (as 6T1) $0$ $1$
1.185.6t1.b.b$1$ $ 5 \cdot 37 $ 6.6.234270125.1 $C_6$ (as 6T1) $0$ $1$
1.111.6t1.b.a$1$ $ 3 \cdot 37 $ 6.0.50602347.1 $C_6$ (as 6T1) $0$ $-1$
1.555.6t1.a.b$1$ $ 3 \cdot 5 \cdot 37 $ 6.0.6325293375.1 $C_6$ (as 6T1) $0$ $-1$
1.37.3t1.a.a$1$ $ 37 $ 3.3.1369.1 $C_3$ (as 3T1) $0$ $1$
1.37.3t1.a.b$1$ $ 37 $ 3.3.1369.1 $C_3$ (as 3T1) $0$ $1$
1.111.6t1.b.b$1$ $ 3 \cdot 37 $ 6.0.50602347.1 $C_6$ (as 6T1) $0$ $-1$
2.4107.3t2.a.a$2$ $ 3 \cdot 37^{2}$ 3.1.4107.1 $S_3$ (as 3T2) $1$ $0$
2.102675.6t3.b.a$2$ $ 3 \cdot 5^{2} \cdot 37^{2}$ 6.2.2108431125.1 $D_{6}$ (as 6T3) $1$ $0$
* 2.111.6t5.a.a$2$ $ 3 \cdot 37 $ 6.0.36963.1 $S_3\times C_3$ (as 6T5) $0$ $0$
* 2.2775.12t18.a.a$2$ $ 3 \cdot 5^{2} \cdot 37 $ 12.0.21347865140625.1 $C_6\times S_3$ (as 12T18) $0$ $0$
* 2.2775.12t18.a.b$2$ $ 3 \cdot 5^{2} \cdot 37 $ 12.0.21347865140625.1 $C_6\times S_3$ (as 12T18) $0$ $0$
* 2.111.6t5.a.b$2$ $ 3 \cdot 37 $ 6.0.36963.1 $S_3\times C_3$ (as 6T5) $0$ $0$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.