Normalized defining polynomial
\( x^{12} - 4 x^{11} + 43 x^{10} - 112 x^{9} + 748 x^{8} - 1200 x^{7} + 6649 x^{6} - 4588 x^{5} + 36700 x^{4} - 9786 x^{3} + 141674 x^{2} - 70165 x + 271181 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(21303969908600640625=5^{6}\cdot 7^{10}\cdot 13^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $40.80$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 7, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(455=5\cdot 7\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{455}(1,·)$, $\chi_{455}(194,·)$, $\chi_{455}(261,·)$, $\chi_{455}(326,·)$, $\chi_{455}(129,·)$, $\chi_{455}(454,·)$, $\chi_{455}(79,·)$, $\chi_{455}(144,·)$, $\chi_{455}(274,·)$, $\chi_{455}(181,·)$, $\chi_{455}(311,·)$, $\chi_{455}(376,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{97} a^{8} + \frac{48}{97} a^{7} + \frac{35}{97} a^{6} + \frac{48}{97} a^{5} + \frac{39}{97} a^{4} + \frac{48}{97} a^{3} + \frac{39}{97} a^{2} + \frac{47}{97} a + \frac{47}{97}$, $\frac{1}{97} a^{9} - \frac{38}{97} a^{7} + \frac{17}{97} a^{6} - \frac{34}{97} a^{5} + \frac{19}{97} a^{4} - \frac{34}{97} a^{3} + \frac{18}{97} a^{2} + \frac{22}{97} a - \frac{25}{97}$, $\frac{1}{97} a^{10} - \frac{2}{97} a^{7} + \frac{35}{97} a^{6} - \frac{7}{97} a^{4} - \frac{1}{97} a^{3} - \frac{48}{97} a^{2} + \frac{15}{97} a + \frac{40}{97}$, $\frac{1}{230761303962880602913} a^{11} + \frac{30204860788875331}{7957286343547606997} a^{10} - \frac{401043796746820}{230761303962880602913} a^{9} - \frac{162986191819915992}{230761303962880602913} a^{8} + \frac{113172032434501536627}{230761303962880602913} a^{7} + \frac{56764619086138693904}{230761303962880602913} a^{6} + \frac{98381470424924581220}{230761303962880602913} a^{5} - \frac{43979207525826446939}{230761303962880602913} a^{4} + \frac{7371761984188671292}{230761303962880602913} a^{3} + \frac{25525384821045866394}{230761303962880602913} a^{2} + \frac{92279319557369556711}{230761303962880602913} a - \frac{18977066502213760369}{230761303962880602913}$
Class group and class number
$C_{4}\times C_{4}\times C_{20}$, which has order $320$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 104.882003477 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_6$ (as 12T2):
| An abelian group of order 12 |
| The 12 conjugacy class representatives for $C_6\times C_2$ |
| Character table for $C_6\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{-455}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-91}) \), \(\Q(\zeta_{7})^+\), \(\Q(\sqrt{5}, \sqrt{-91})\), 6.0.4615622375.1, 6.6.300125.1, 6.0.36924979.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}$ | R | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/29.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/41.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $7$ | 7.12.10.1 | $x^{12} - 70 x^{6} + 35721$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ |
| $13$ | 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |