Normalized defining polynomial
\( x^{12} - x^{11} + 76 x^{10} + 316 x^{9} + 2281 x^{8} - 4273 x^{7} + 296307 x^{6} - 173877 x^{5} + \cdots + 493326523 \)
Invariants
Degree: | $12$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 6]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(21098872958222608828144613261\) \(\medspace = 17^{9}\cdot 37^{11}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(229.27\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $17^{3/4}37^{11/12}\approx 229.2740687298747$ | ||
Ramified primes: | \(17\), \(37\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{629}) \) | ||
$\card{ \Gal(K/\Q) }$: | $12$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is Galois and abelian over $\Q$. | |||
Conductor: | \(629=17\cdot 37\) | ||
Dirichlet character group: | $\lbrace$$\chi_{629}(1,·)$, $\chi_{629}(101,·)$, $\chi_{629}(137,·)$, $\chi_{629}(492,·)$, $\chi_{629}(191,·)$, $\chi_{629}(528,·)$, $\chi_{629}(628,·)$, $\chi_{629}(438,·)$, $\chi_{629}(378,·)$, $\chi_{629}(251,·)$, $\chi_{629}(208,·)$, $\chi_{629}(421,·)$$\rbrace$ | ||
This is a CM field. | |||
Reflex fields: | 4.0.248858189.2$^{2}$, 12.0.21098872958222608828144613261.1$^{30}$ |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{47}a^{10}-\frac{12}{47}a^{9}-\frac{21}{47}a^{8}+\frac{5}{47}a^{7}-\frac{15}{47}a^{6}+\frac{11}{47}a^{5}-\frac{4}{47}a^{4}-\frac{8}{47}a^{3}-\frac{16}{47}a^{2}-\frac{4}{47}a$, $\frac{1}{56\!\cdots\!31}a^{11}+\frac{37\!\cdots\!32}{56\!\cdots\!31}a^{10}+\frac{25\!\cdots\!91}{12\!\cdots\!73}a^{9}-\frac{48\!\cdots\!90}{56\!\cdots\!31}a^{8}+\frac{17\!\cdots\!33}{56\!\cdots\!31}a^{7}-\frac{20\!\cdots\!34}{56\!\cdots\!31}a^{6}+\frac{19\!\cdots\!51}{56\!\cdots\!31}a^{5}-\frac{24\!\cdots\!26}{56\!\cdots\!31}a^{4}+\frac{93\!\cdots\!45}{56\!\cdots\!31}a^{3}-\frac{93\!\cdots\!62}{56\!\cdots\!31}a^{2}-\frac{77\!\cdots\!17}{56\!\cdots\!31}a-\frac{27\!\cdots\!00}{12\!\cdots\!73}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
$C_{13}\times C_{13}\times C_{52}$, which has order $8788$ (assuming GRH)
Relative class number: $4394$ (assuming GRH)
Unit group
Rank: | $5$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{11\!\cdots\!48}{14\!\cdots\!63}a^{11}-\frac{50\!\cdots\!53}{14\!\cdots\!63}a^{10}+\frac{74\!\cdots\!57}{14\!\cdots\!63}a^{9}+\frac{16\!\cdots\!19}{14\!\cdots\!63}a^{8}+\frac{42\!\cdots\!17}{14\!\cdots\!63}a^{7}-\frac{12\!\cdots\!77}{14\!\cdots\!63}a^{6}+\frac{36\!\cdots\!39}{14\!\cdots\!63}a^{5}-\frac{87\!\cdots\!94}{14\!\cdots\!63}a^{4}+\frac{60\!\cdots\!76}{14\!\cdots\!63}a^{3}-\frac{63\!\cdots\!37}{14\!\cdots\!63}a^{2}+\frac{10\!\cdots\!79}{14\!\cdots\!63}a-\frac{20\!\cdots\!80}{31\!\cdots\!29}$, $\frac{11\!\cdots\!48}{14\!\cdots\!63}a^{11}-\frac{50\!\cdots\!53}{14\!\cdots\!63}a^{10}+\frac{74\!\cdots\!57}{14\!\cdots\!63}a^{9}+\frac{16\!\cdots\!19}{14\!\cdots\!63}a^{8}+\frac{42\!\cdots\!17}{14\!\cdots\!63}a^{7}-\frac{12\!\cdots\!77}{14\!\cdots\!63}a^{6}+\frac{36\!\cdots\!39}{14\!\cdots\!63}a^{5}-\frac{87\!\cdots\!94}{14\!\cdots\!63}a^{4}+\frac{60\!\cdots\!76}{14\!\cdots\!63}a^{3}-\frac{63\!\cdots\!37}{14\!\cdots\!63}a^{2}+\frac{10\!\cdots\!79}{14\!\cdots\!63}a+\frac{10\!\cdots\!49}{31\!\cdots\!29}$, $\frac{39\!\cdots\!43}{31\!\cdots\!27}a^{11}-\frac{56\!\cdots\!86}{31\!\cdots\!27}a^{10}+\frac{27\!\cdots\!61}{31\!\cdots\!27}a^{9}+\frac{11\!\cdots\!44}{31\!\cdots\!27}a^{8}+\frac{66\!\cdots\!16}{31\!\cdots\!27}a^{7}-\frac{23\!\cdots\!03}{31\!\cdots\!27}a^{6}+\frac{11\!\cdots\!92}{31\!\cdots\!27}a^{5}-\frac{10\!\cdots\!96}{31\!\cdots\!27}a^{4}+\frac{27\!\cdots\!02}{31\!\cdots\!27}a^{3}+\frac{41\!\cdots\!30}{31\!\cdots\!27}a^{2}+\frac{16\!\cdots\!13}{31\!\cdots\!27}a-\frac{13\!\cdots\!05}{31\!\cdots\!27}$, $\frac{60\!\cdots\!83}{62\!\cdots\!69}a^{11}-\frac{26\!\cdots\!89}{62\!\cdots\!69}a^{10}+\frac{39\!\cdots\!20}{62\!\cdots\!69}a^{9}+\frac{92\!\cdots\!27}{62\!\cdots\!69}a^{8}-\frac{16\!\cdots\!27}{62\!\cdots\!69}a^{7}-\frac{39\!\cdots\!20}{62\!\cdots\!69}a^{6}+\frac{31\!\cdots\!91}{13\!\cdots\!27}a^{5}-\frac{39\!\cdots\!42}{62\!\cdots\!69}a^{4}+\frac{24\!\cdots\!26}{62\!\cdots\!69}a^{3}-\frac{36\!\cdots\!31}{62\!\cdots\!69}a^{2}+\frac{18\!\cdots\!86}{62\!\cdots\!69}a-\frac{17\!\cdots\!41}{13\!\cdots\!27}$, $\frac{89\!\cdots\!26}{62\!\cdots\!69}a^{11}-\frac{73\!\cdots\!58}{62\!\cdots\!69}a^{10}+\frac{46\!\cdots\!96}{62\!\cdots\!69}a^{9}-\frac{11\!\cdots\!16}{62\!\cdots\!69}a^{8}-\frac{15\!\cdots\!01}{62\!\cdots\!69}a^{7}-\frac{22\!\cdots\!62}{62\!\cdots\!69}a^{6}+\frac{28\!\cdots\!20}{62\!\cdots\!69}a^{5}-\frac{16\!\cdots\!68}{62\!\cdots\!69}a^{4}+\frac{11\!\cdots\!52}{62\!\cdots\!69}a^{3}-\frac{31\!\cdots\!59}{62\!\cdots\!69}a^{2}-\frac{47\!\cdots\!38}{62\!\cdots\!69}a-\frac{45\!\cdots\!42}{13\!\cdots\!27}$ (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 92664.46751452335 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{6}\cdot 92664.46751452335 \cdot 8788}{2\cdot\sqrt{21098872958222608828144613261}}\cr\approx \mathstrut & 0.172473695407446 \end{aligned}\] (assuming GRH)
Galois group
A cyclic group of order 12 |
The 12 conjugacy class representatives for $C_{12}$ |
Character table for $C_{12}$ |
Intermediate fields
\(\Q(\sqrt{629}) \), 3.3.1369.1, 4.0.248858189.2, 6.6.340686860741.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/padicField/2.12.0.1}{12} }$ | ${\href{/padicField/3.12.0.1}{12} }$ | ${\href{/padicField/5.3.0.1}{3} }^{4}$ | ${\href{/padicField/7.12.0.1}{12} }$ | ${\href{/padicField/11.4.0.1}{4} }^{3}$ | ${\href{/padicField/13.12.0.1}{12} }$ | R | ${\href{/padicField/19.12.0.1}{12} }$ | ${\href{/padicField/23.2.0.1}{2} }^{6}$ | ${\href{/padicField/29.2.0.1}{2} }^{6}$ | ${\href{/padicField/31.2.0.1}{2} }^{6}$ | R | ${\href{/padicField/41.12.0.1}{12} }$ | ${\href{/padicField/43.4.0.1}{4} }^{3}$ | ${\href{/padicField/47.1.0.1}{1} }^{12}$ | ${\href{/padicField/53.6.0.1}{6} }^{2}$ | ${\href{/padicField/59.12.0.1}{12} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(17\) | 17.12.9.3 | $x^{12} + 289 x^{4} - 68782$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ |
\(37\) | 37.12.11.11 | $x^{12} + 518$ | $12$ | $1$ | $11$ | $C_{12}$ | $[\ ]_{12}$ |