Normalized defining polynomial
\( x^{12} - 9 x^{10} - 112 x^{9} + 2139 x^{8} + 7056 x^{7} + 56293 x^{6} + 2688 x^{5} + 1618164 x^{4} + 5742912 x^{3} + 49780692 x^{2} + 107430624 x + 392457024 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(21088444099773325470807822336=2^{12}\cdot 3^{18}\cdot 7^{10}\cdot 19^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $229.26$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4788=2^{2}\cdot 3^{2}\cdot 7\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4788}(1,·)$, $\chi_{4788}(3649,·)$, $\chi_{4788}(3079,·)$, $\chi_{4788}(3533,·)$, $\chi_{4788}(4559,·)$, $\chi_{4788}(4561,·)$, $\chi_{4788}(115,·)$, $\chi_{4788}(4103,·)$, $\chi_{4788}(2393,·)$, $\chi_{4788}(2623,·)$, $\chi_{4788}(2621,·)$, $\chi_{4788}(2279,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{84} a^{6} - \frac{1}{4} a^{5} - \frac{5}{28} a^{4} - \frac{5}{12} a^{3} + \frac{1}{7} a^{2} - \frac{1}{2} a + \frac{3}{7}$, $\frac{1}{168} a^{7} - \frac{3}{14} a^{5} - \frac{1}{12} a^{4} - \frac{17}{56} a^{3} + \frac{1}{4} a^{2} - \frac{1}{28} a$, $\frac{1}{168} a^{8} - \frac{1}{12} a^{5} - \frac{1}{56} a^{4} + \frac{1}{4} a^{3} + \frac{1}{28} a^{2} - \frac{2}{7}$, $\frac{1}{41664} a^{9} - \frac{1}{651} a^{8} - \frac{1}{3472} a^{7} + \frac{59}{10416} a^{6} + \frac{4727}{41664} a^{5} - \frac{167}{3472} a^{4} - \frac{409}{1302} a^{3} - \frac{97}{434} a^{2} - \frac{943}{3472} a + \frac{1}{28}$, $\frac{1}{968313024} a^{10} - \frac{149}{17291304} a^{9} - \frac{418331}{242078256} a^{8} - \frac{7601}{3968496} a^{7} - \frac{1650265}{968313024} a^{6} + \frac{4595509}{242078256} a^{5} - \frac{2703319}{20173188} a^{4} - \frac{1066719}{6724396} a^{3} - \frac{19425199}{80692752} a^{2} + \frac{2994549}{6724396} a + \frac{646}{7747}$, $\frac{1}{1662843920244909696} a^{11} - \frac{190072499}{554281306748303232} a^{10} - \frac{60790951271}{8940021076585536} a^{9} - \frac{293497495452331}{103927745015306856} a^{8} + \frac{166344353589003}{184760435582767744} a^{7} - \frac{840679209928777}{554281306748303232} a^{6} - \frac{141127322077614073}{831421960122454848} a^{5} + \frac{97531756024217}{1117502634573192} a^{4} - \frac{13000223661818045}{46190108895691936} a^{3} - \frac{15555490640983753}{138570326687075808} a^{2} + \frac{1306453616666427}{23095054447845968} a - \frac{26906749574247}{186250439095532}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{100104}$, which has order $1601664$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 100243.4418416945 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_6$ (as 12T2):
| An abelian group of order 12 |
| The 12 conjugacy class representatives for $C_6\times C_2$ |
| Character table for $C_6\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{7}) \), \(\Q(\sqrt{-399}) \), \(\Q(\sqrt{-57}) \), 3.3.3969.1, \(\Q(\sqrt{7}, \sqrt{-57})\), 6.6.7057326528.2, 6.0.2269040749479.8, 6.0.20745515423808.8 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}$ | R | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/31.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/47.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| $3$ | 3.6.9.9 | $x^{6} + 6 x^{4} + 21$ | $6$ | $1$ | $9$ | $C_6$ | $[2]_{2}$ |
| 3.6.9.9 | $x^{6} + 6 x^{4} + 21$ | $6$ | $1$ | $9$ | $C_6$ | $[2]_{2}$ | |
| $7$ | 7.12.10.2 | $x^{12} + 35 x^{6} + 441$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ |
| $19$ | 19.6.3.1 | $x^{6} - 38 x^{4} + 361 x^{2} - 109744$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 19.6.3.1 | $x^{6} - 38 x^{4} + 361 x^{2} - 109744$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |