Normalized defining polynomial
\( x^{12} - 2 x^{11} - 49 x^{10} + 50 x^{9} + 975 x^{8} - 318 x^{7} - 5152 x^{6} + 9584 x^{5} + 18694 x^{4} - 34388 x^{3} + 140349 x^{2} - 100962 x + 250587 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(208332854832557470253056=2^{18}\cdot 7^{8}\cdot 13^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $87.75$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(728=2^{3}\cdot 7\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{728}(627,·)$, $\chi_{728}(1,·)$, $\chi_{728}(547,·)$, $\chi_{728}(667,·)$, $\chi_{728}(337,·)$, $\chi_{728}(9,·)$, $\chi_{728}(555,·)$, $\chi_{728}(81,·)$, $\chi_{728}(179,·)$, $\chi_{728}(361,·)$, $\chi_{728}(121,·)$, $\chi_{728}(155,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{3} a^{3} - \frac{1}{3} a$, $\frac{1}{3} a^{4} - \frac{1}{3} a^{2}$, $\frac{1}{9} a^{5} + \frac{1}{9} a^{4} - \frac{1}{9} a^{3} - \frac{4}{9} a^{2} - \frac{1}{3} a$, $\frac{1}{9} a^{6} + \frac{1}{9} a^{4} - \frac{2}{9} a^{2}$, $\frac{1}{27} a^{7} + \frac{1}{27} a^{6} + \frac{1}{27} a^{5} + \frac{1}{27} a^{4} - \frac{2}{27} a^{3} - \frac{11}{27} a^{2} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{81} a^{8} + \frac{1}{81} a^{7} + \frac{4}{81} a^{6} + \frac{1}{81} a^{5} + \frac{1}{81} a^{4} - \frac{11}{81} a^{3} - \frac{8}{27} a^{2} - \frac{4}{9} a - \frac{1}{3}$, $\frac{1}{243} a^{9} - \frac{1}{243} a^{8} + \frac{2}{243} a^{7} + \frac{11}{243} a^{6} + \frac{8}{243} a^{5} - \frac{40}{243} a^{4} + \frac{16}{243} a^{3} - \frac{2}{81} a^{2} - \frac{1}{27} a + \frac{2}{9}$, $\frac{1}{2187} a^{10} + \frac{4}{2187} a^{9} + \frac{1}{243} a^{8} - \frac{1}{729} a^{7} + \frac{16}{729} a^{6} + \frac{37}{729} a^{5} + \frac{305}{2187} a^{4} + \frac{122}{2187} a^{3} - \frac{193}{729} a^{2} - \frac{47}{243} a + \frac{1}{81}$, $\frac{1}{56289439183282479} a^{11} - \frac{9998803712636}{56289439183282479} a^{10} + \frac{10023625420007}{18763146394427493} a^{9} - \frac{74548288750777}{18763146394427493} a^{8} - \frac{65917865299325}{18763146394427493} a^{7} + \frac{732160647664777}{18763146394427493} a^{6} - \frac{268756473538495}{56289439183282479} a^{5} - \frac{5108436379606951}{56289439183282479} a^{4} - \frac{441554551548802}{6254382131475831} a^{3} + \frac{2328464359821716}{6254382131475831} a^{2} - \frac{15394168662262}{694931347941759} a + \frac{205779282490586}{694931347941759}$
Class group and class number
$C_{3}\times C_{4221}$, which has order $12663$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 17569.03784509895 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_6$ (as 12T2):
| An abelian group of order 12 |
| The 12 conjugacy class representatives for $C_6\times C_2$ |
| Character table for $C_6\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{-26}) \), \(\Q(\sqrt{13}) \), \(\Q(\sqrt{-2}) \), 3.3.8281.2, \(\Q(\sqrt{-2}, \sqrt{13})\), 6.0.456434940416.5, 6.6.891474493.2, 6.0.35110380032.4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}$ | R | ${\href{/LocalNumberField/11.2.0.1}{2} }^{6}$ | R | ${\href{/LocalNumberField/17.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.12.18.15 | $x^{12} - 16 x^{10} + 24 x^{6} + 64 x^{4} + 64$ | $2$ | $6$ | $18$ | $C_6\times C_2$ | $[3]^{6}$ |
| $7$ | 7.6.4.1 | $x^{6} + 35 x^{3} + 441$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
| 7.6.4.1 | $x^{6} + 35 x^{3} + 441$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| $13$ | 13.12.10.1 | $x^{12} - 117 x^{6} + 10816$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ |