Properties

Label 12.0.207778300343289.1
Degree $12$
Signature $[0, 6]$
Discriminant $3^{16}\cdot 13^{6}$
Root discriminant $15.60$
Ramified primes $3, 13$
Class number $2$
Class group $[2]$
Galois group $S_3\wr C_2$ (as 12T34)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![9, 9, 36, -21, 66, -27, 49, -9, 27, -2, 6, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^12 + 6*x^10 - 2*x^9 + 27*x^8 - 9*x^7 + 49*x^6 - 27*x^5 + 66*x^4 - 21*x^3 + 36*x^2 + 9*x + 9)
 
gp: K = bnfinit(x^12 + 6*x^10 - 2*x^9 + 27*x^8 - 9*x^7 + 49*x^6 - 27*x^5 + 66*x^4 - 21*x^3 + 36*x^2 + 9*x + 9, 1)
 

Normalized defining polynomial

\( x^{12} + 6 x^{10} - 2 x^{9} + 27 x^{8} - 9 x^{7} + 49 x^{6} - 27 x^{5} + 66 x^{4} - 21 x^{3} + 36 x^{2} + 9 x + 9 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $12$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(207778300343289=3^{16}\cdot 13^{6}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $15.60$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 13$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3} a^{6} - \frac{1}{3} a^{3}$, $\frac{1}{3} a^{7} - \frac{1}{3} a^{4}$, $\frac{1}{3} a^{8} - \frac{1}{3} a^{5}$, $\frac{1}{9} a^{9} + \frac{1}{9} a^{8} + \frac{1}{9} a^{7} - \frac{1}{9} a^{6} + \frac{2}{9} a^{5} - \frac{4}{9} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a$, $\frac{1}{9} a^{10} + \frac{1}{9} a^{7} + \frac{1}{3} a^{5} + \frac{4}{9} a^{4} - \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{132768} a^{11} - \frac{4291}{132768} a^{10} + \frac{2191}{132768} a^{9} + \frac{10193}{132768} a^{8} + \frac{679}{5532} a^{7} - \frac{16417}{132768} a^{6} + \frac{1357}{3688} a^{5} + \frac{31465}{132768} a^{4} - \frac{7217}{14752} a^{3} + \frac{5545}{22128} a^{2} - \frac{5989}{22128} a - \frac{4373}{14752}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}$, which has order $2$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $5$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -\frac{5677}{132768} a^{11} + \frac{495}{14752} a^{10} - \frac{10625}{44256} a^{9} + \frac{35939}{132768} a^{8} - \frac{2085}{1844} a^{7} + \frac{17605}{14752} a^{6} - \frac{65185}{33192} a^{5} + \frac{34995}{14752} a^{4} - \frac{133705}{44256} a^{3} + \frac{60811}{22128} a^{2} - \frac{8645}{7376} a + \frac{12657}{14752} \) (order $6$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 568.299169451 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$S_3\wr C_2$ (as 12T34):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 72
The 9 conjugacy class representatives for $S_3\wr C_2$
Character table for $S_3\wr C_2$

Intermediate fields

\(\Q(\sqrt{13}) \), \(\Q(\sqrt{-39}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-3}, \sqrt{13})\), 6.4.4804839.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 6 siblings: 6.4.4804839.1, 6.0.255879.1
Degree 9 sibling: 9.3.31524548679.2
Degree 12 siblings: Deg 12, 12.2.69259433447763.2, Deg 12, Deg 12, Deg 12
Degree 18 siblings: Deg 18, Deg 18, Deg 18
Degree 24 siblings: data not computed
Degree 36 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }^{2}$ R ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ R ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}$ ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{3}$ ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}$ ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/43.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{3}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$3$3.6.7.5$x^{6} + 6 x^{2} + 3$$6$$1$$7$$D_{6}$$[3/2]_{2}^{2}$
3.6.9.12$x^{6} + 3 x^{4} + 3$$6$$1$$9$$D_{6}$$[2]_{2}^{2}$
$13$13.2.1.1$x^{2} - 13$$2$$1$$1$$C_2$$[\ ]_{2}$
13.2.1.1$x^{2} - 13$$2$$1$$1$$C_2$$[\ ]_{2}$
13.4.2.1$x^{4} + 39 x^{2} + 676$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
13.4.2.1$x^{4} + 39 x^{2} + 676$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$