Normalized defining polynomial
\( x^{12} + 604 x^{10} + 143581 x^{8} + 16983632 x^{6} + 1039094758 x^{4} + 30891844344 x^{2} + 371530478089 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2055018859092572865671725056=2^{24}\cdot 3^{6}\cdot 7^{10}\cdot 29^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $188.83$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4872=2^{3}\cdot 3\cdot 7\cdot 29\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4872}(1,·)$, $\chi_{4872}(2435,·)$, $\chi_{4872}(2437,·)$, $\chi_{4872}(4871,·)$, $\chi_{4872}(1739,·)$, $\chi_{4872}(4175,·)$, $\chi_{4872}(3827,·)$, $\chi_{4872}(1045,·)$, $\chi_{4872}(697,·)$, $\chi_{4872}(3481,·)$, $\chi_{4872}(1391,·)$, $\chi_{4872}(3133,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{609533} a^{7} + \frac{301}{609533} a^{5} + \frac{25886}{609533} a^{3} - \frac{52984}{609533} a$, $\frac{1}{62515533079} a^{8} + \frac{1251371550}{62515533079} a^{6} + \frac{10276142733}{62515533079} a^{4} + \frac{6396995851}{62515533079} a^{2} - \frac{2287}{102563}$, $\frac{1}{62515533079} a^{9} + \frac{387}{62515533079} a^{7} + \frac{8706621144}{62515533079} a^{5} - \frac{3550794645}{62515533079} a^{3} - \frac{27724898398}{62515533079} a$, $\frac{1}{62515533079} a^{10} + \frac{24550095926}{62515533079} a^{6} + \frac{20576084740}{62515533079} a^{4} - \frac{2740969575}{62515533079} a^{2} - \frac{37998}{102563}$, $\frac{1}{62515533079} a^{11} + \frac{868}{62515533079} a^{7} + \frac{7830375604}{62515533079} a^{5} + \frac{26407640151}{62515533079} a^{3} - \frac{21621256615}{62515533079} a$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{4}\times C_{52}\times C_{936}$, which has order $1557504$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 279.1500271937239 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_6$ (as 12T2):
| An abelian group of order 12 |
| The 12 conjugacy class representatives for $C_6\times C_2$ |
| Character table for $C_6\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{-1218}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{-609}) \), \(\Q(\zeta_{7})^+\), \(\Q(\sqrt{2}, \sqrt{-609})\), 6.0.5666539479552.2, 6.6.1229312.1, 6.0.708317434944.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{4}$ | R | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.12.24.79 | $x^{12} - 4 x^{11} - 10 x^{10} + 16 x^{9} - 6 x^{8} + 16 x^{7} + 4 x^{6} - 8 x^{5} + 16 x^{4} + 16 x^{3} + 16 x^{2} + 8$ | $4$ | $3$ | $24$ | $C_6\times C_2$ | $[2, 3]^{3}$ |
| $3$ | 3.12.6.2 | $x^{12} + 108 x^{6} - 243 x^{2} + 2916$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |
| $7$ | 7.6.5.2 | $x^{6} - 7$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |
| 7.6.5.2 | $x^{6} - 7$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| $29$ | 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |