Normalized defining polynomial
\( x^{12} - 6 x^{11} + 111 x^{10} - 500 x^{9} + 5235 x^{8} - 18006 x^{7} + 135691 x^{6} - 346086 x^{5} + 2048187 x^{4} - 3539604 x^{3} + 17104653 x^{2} - 15389676 x + 62195361 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(203279051316071044583424=2^{12}\cdot 3^{18}\cdot 71^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $87.57$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 71$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(2556=2^{2}\cdot 3^{2}\cdot 71\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{2556}(1,·)$, $\chi_{2556}(995,·)$, $\chi_{2556}(709,·)$, $\chi_{2556}(1703,·)$, $\chi_{2556}(1705,·)$, $\chi_{2556}(2413,·)$, $\chi_{2556}(143,·)$, $\chi_{2556}(851,·)$, $\chi_{2556}(853,·)$, $\chi_{2556}(1847,·)$, $\chi_{2556}(1561,·)$, $\chi_{2556}(2555,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{17} a^{9} + \frac{4}{17} a^{8} + \frac{7}{17} a^{7} + \frac{5}{17} a^{6} + \frac{8}{17} a^{5} + \frac{8}{17} a^{4} + \frac{2}{17} a^{3} + \frac{3}{17} a^{2} + \frac{3}{17} a + \frac{5}{17}$, $\frac{1}{176680763173} a^{10} - \frac{5}{176680763173} a^{9} - \frac{8912828114}{176680763173} a^{8} + \frac{35651312486}{176680763173} a^{7} + \frac{4693984016}{176680763173} a^{6} + \frac{37819217403}{176680763173} a^{5} - \frac{87760013327}{176680763173} a^{4} - \frac{81493155338}{176680763173} a^{3} - \frac{49486592143}{176680763173} a^{2} - \frac{27192688152}{176680763173} a - \frac{52927603389}{176680763173}$, $\frac{1}{5085402406408459} a^{11} + \frac{14386}{5085402406408459} a^{10} + \frac{3223305767390}{5085402406408459} a^{9} + \frac{2399927361124576}{5085402406408459} a^{8} + \frac{1442413939246091}{5085402406408459} a^{7} - \frac{574739167816817}{5085402406408459} a^{6} + \frac{1132224535389404}{5085402406408459} a^{5} + \frac{110366085115948}{5085402406408459} a^{4} - \frac{1409112416326085}{5085402406408459} a^{3} - \frac{771220901089985}{5085402406408459} a^{2} - \frac{1606437297111680}{5085402406408459} a - \frac{1125030326329408}{5085402406408459}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{10}\times C_{210}$, which has order $33600$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 325.67540279491664 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_6$ (as 12T2):
| An abelian group of order 12 |
| The 12 conjugacy class representatives for $C_6\times C_2$ |
| Character table for $C_6\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{3}) \), \(\Q(\sqrt{-71}) \), \(\Q(\sqrt{-213}) \), \(\Q(\zeta_{9})^+\), \(\Q(\sqrt{3}, \sqrt{-71})\), \(\Q(\zeta_{36})^+\), 6.0.2348254071.3, 6.0.450864781632.8 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/37.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.6.5 | $x^{6} - 2 x^{4} + x^{2} - 3$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ |
| 2.6.6.5 | $x^{6} - 2 x^{4} + x^{2} - 3$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| $3$ | 3.6.9.3 | $x^{6} + 3 x^{4} + 24$ | $6$ | $1$ | $9$ | $C_6$ | $[2]_{2}$ |
| 3.6.9.3 | $x^{6} + 3 x^{4} + 24$ | $6$ | $1$ | $9$ | $C_6$ | $[2]_{2}$ | |
| $71$ | 71.2.1.2 | $x^{2} + 142$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 71.2.1.2 | $x^{2} + 142$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 71.2.1.2 | $x^{2} + 142$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 71.2.1.2 | $x^{2} + 142$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 71.2.1.2 | $x^{2} + 142$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 71.2.1.2 | $x^{2} + 142$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |