Normalized defining polynomial
\( x^{12} - x^{11} + 482 x^{10} - 482 x^{9} + 89467 x^{8} - 89467 x^{7} + 7991335 x^{6} - 7991335 x^{5} + 349088637 x^{4} - 349088637 x^{3} + 6659388724 x^{2} - 6659388724 x + 40013832041 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(19610762759203196764498237=13^{11}\cdot 149^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $128.15$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 149$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1937=13\cdot 149\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1937}(1,·)$, $\chi_{1937}(1191,·)$, $\chi_{1937}(297,·)$, $\chi_{1937}(1489,·)$, $\chi_{1937}(1042,·)$, $\chi_{1937}(1491,·)$, $\chi_{1937}(148,·)$, $\chi_{1937}(597,·)$, $\chi_{1937}(1193,·)$, $\chi_{1937}(1044,·)$, $\chi_{1937}(1787,·)$, $\chi_{1937}(1342,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{4157457641} a^{7} - \frac{1558069783}{4157457641} a^{6} + \frac{259}{4157457641} a^{5} - \frac{822507623}{4157457641} a^{4} + \frac{19166}{4157457641} a^{3} - \frac{1995867846}{4157457641} a^{2} + \frac{354571}{4157457641} a + \frac{219361608}{4157457641}$, $\frac{1}{4157457641} a^{8} + \frac{296}{4157457641} a^{6} - \frac{555825003}{4157457641} a^{5} + \frac{27380}{4157457641} a^{4} + \frac{1108815470}{4157457641} a^{3} + \frac{810448}{4157457641} a^{2} - \frac{548404020}{4157457641} a + \frac{3748322}{4157457641}$, $\frac{1}{4157457641} a^{9} - \frac{844967386}{4157457641} a^{6} - \frac{49284}{4157457641} a^{5} - \frac{13564697}{78442597} a^{4} - \frac{4862688}{4157457641} a^{3} - \frac{130506626}{4157457641} a^{2} - \frac{101204694}{4157457641} a + \frac{1588286288}{4157457641}$, $\frac{1}{4157457641} a^{10} - \frac{61605}{4157457641} a^{6} + \frac{1939826701}{4157457641} a^{5} - \frac{7597950}{4157457641} a^{4} + \frac{1216901755}{4157457641} a^{3} - \frac{253011735}{4157457641} a^{2} - \frac{508133330}{4157457641} a - \frac{1248191226}{4157457641}$, $\frac{1}{4157457641} a^{11} + \frac{275402753}{4157457641} a^{6} + \frac{8357745}{4157457641} a^{5} + \frac{1728515348}{4157457641} a^{4} + \frac{927709695}{4157457641} a^{3} + \frac{862946415}{4157457641} a^{2} - \frac{192132976}{4157457641} a + \frac{2034527590}{4157457641}$
Class group and class number
$C_{35}\times C_{5110}$, which has order $178850$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 120.784031363 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 12 |
| The 12 conjugacy class representatives for $C_{12}$ |
| Character table for $C_{12}$ |
Intermediate fields
| \(\Q(\sqrt{13}) \), 3.3.169.1, 4.0.48775597.1, \(\Q(\zeta_{13})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.12.0.1}{12} }$ | ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/7.12.0.1}{12} }$ | ${\href{/LocalNumberField/11.12.0.1}{12} }$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }$ | ${\href{/LocalNumberField/41.12.0.1}{12} }$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/53.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.12.11.1 | $x^{12} - 13$ | $12$ | $1$ | $11$ | $C_{12}$ | $[\ ]_{12}$ |
| $149$ | 149.12.6.2 | $x^{12} - 73439775749 x^{2} + 153195372212414$ | $2$ | $6$ | $6$ | $C_{12}$ | $[\ ]_{2}^{6}$ |