Normalized defining polynomial
\( x^{12} - 6 x^{11} - 9 x^{10} + 72 x^{9} + 204 x^{8} - 600 x^{7} + 832 x^{6} + 1203 x^{5} + 10530 x^{4} - 10089 x^{3} + 41817 x^{2} - 14205 x + 157375 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(193873788090710808693921=3^{18}\cdot 7^{10}\cdot 11^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $87.22$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(693=3^{2}\cdot 7\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{693}(1,·)$, $\chi_{693}(67,·)$, $\chi_{693}(551,·)$, $\chi_{693}(362,·)$, $\chi_{693}(331,·)$, $\chi_{693}(142,·)$, $\chi_{693}(626,·)$, $\chi_{693}(692,·)$, $\chi_{693}(505,·)$, $\chi_{693}(122,·)$, $\chi_{693}(571,·)$, $\chi_{693}(188,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{5} a^{5} - \frac{1}{5} a$, $\frac{1}{5} a^{6} - \frac{1}{5} a^{2}$, $\frac{1}{5} a^{7} - \frac{1}{5} a^{3}$, $\frac{1}{5} a^{8} - \frac{1}{5} a^{4}$, $\frac{1}{25} a^{9} - \frac{2}{25} a^{8} - \frac{1}{25} a^{7} + \frac{2}{25} a^{6} - \frac{1}{25} a^{5} + \frac{7}{25} a^{4} - \frac{9}{25} a^{3} - \frac{7}{25} a^{2} + \frac{2}{5} a$, $\frac{1}{125} a^{10} - \frac{1}{125} a^{9} + \frac{12}{125} a^{8} + \frac{6}{125} a^{7} - \frac{4}{125} a^{6} + \frac{11}{125} a^{5} - \frac{42}{125} a^{4} + \frac{4}{125} a^{3} + \frac{8}{125} a^{2} - \frac{9}{25} a$, $\frac{1}{75547495405873875625} a^{11} - \frac{120082531405999842}{75547495405873875625} a^{10} - \frac{492920724491072592}{75547495405873875625} a^{9} - \frac{7553527491817566846}{75547495405873875625} a^{8} + \frac{1170117513920326159}{15109499081174775125} a^{7} + \frac{1027905581672167852}{15109499081174775125} a^{6} - \frac{5369701878705306448}{75547495405873875625} a^{5} + \frac{2741427320755639486}{75547495405873875625} a^{4} - \frac{35319164375719108251}{75547495405873875625} a^{3} + \frac{22681078810096609942}{75547495405873875625} a^{2} - \frac{4494581469636223451}{15109499081174775125} a - \frac{278738678808144516}{604379963246991005}$
Class group and class number
$C_{6}\times C_{24}\times C_{72}$, which has order $10368$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5471.6045925579565 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_6$ (as 12T2):
| An abelian group of order 12 |
| The 12 conjugacy class representatives for $C_6\times C_2$ |
| Character table for $C_6\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{-231}) \), \(\Q(\sqrt{21}) \), \(\Q(\sqrt{-11}) \), 3.3.3969.2, \(\Q(\sqrt{-11}, \sqrt{21})\), 6.0.440311012911.4, 6.6.330812181.1, 6.0.20967191091.5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{2}$ | R | ${\href{/LocalNumberField/5.1.0.1}{1} }^{12}$ | R | R | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.6.9.1 | $x^{6} + 3 x^{4} + 15$ | $6$ | $1$ | $9$ | $C_6$ | $[2]_{2}$ |
| 3.6.9.1 | $x^{6} + 3 x^{4} + 15$ | $6$ | $1$ | $9$ | $C_6$ | $[2]_{2}$ | |
| $7$ | 7.12.10.3 | $x^{12} - 49 x^{6} + 3969$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ |
| $11$ | 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |