Normalized defining polynomial
\( x^{12} - x^{11} + 45 x^{10} - 25 x^{9} + 1941 x^{8} - 4660 x^{7} + 88464 x^{6} - 169280 x^{5} + 3763456 x^{4} - 5550080 x^{3} + 8192000 x^{2} - 11534336 x + 16777216 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(191224338285780939453125=5^{9}\cdot 7^{8}\cdot 19^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $87.12$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 7, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(665=5\cdot 7\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{665}(1,·)$, $\chi_{665}(387,·)$, $\chi_{665}(134,·)$, $\chi_{665}(267,·)$, $\chi_{665}(653,·)$, $\chi_{665}(144,·)$, $\chi_{665}(11,·)$, $\chi_{665}(533,·)$, $\chi_{665}(121,·)$, $\chi_{665}(543,·)$, $\chi_{665}(254,·)$, $\chi_{665}(277,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{4} a^{5} - \frac{1}{4} a^{4} + \frac{1}{4} a^{3} - \frac{1}{4} a^{2} + \frac{1}{4} a$, $\frac{1}{16} a^{6} - \frac{1}{16} a^{5} - \frac{3}{16} a^{4} + \frac{7}{16} a^{3} + \frac{5}{16} a^{2} - \frac{1}{4} a$, $\frac{1}{64} a^{7} - \frac{1}{64} a^{6} - \frac{3}{64} a^{5} + \frac{23}{64} a^{4} - \frac{27}{64} a^{3} - \frac{1}{16} a^{2} - \frac{1}{2} a$, $\frac{1}{256} a^{8} - \frac{1}{256} a^{7} - \frac{3}{256} a^{6} + \frac{23}{256} a^{5} + \frac{37}{256} a^{4} + \frac{31}{64} a^{3} - \frac{3}{8} a^{2} - \frac{1}{2} a$, $\frac{1}{114657857536} a^{9} + \frac{85097551}{114657857536} a^{8} - \frac{139554083}{114657857536} a^{7} - \frac{3282269705}{114657857536} a^{6} + \frac{2588133317}{114657857536} a^{5} + \frac{13972769047}{28664464384} a^{4} + \frac{2737694165}{7166116096} a^{3} - \frac{18408549}{1791529024} a^{2} + \frac{91659773}{447882256} a - \frac{5784456}{27992641}$, $\frac{1}{1834525720576} a^{10} - \frac{1}{1834525720576} a^{9} + \frac{3385989933}{1834525720576} a^{8} - \frac{8706120473}{1834525720576} a^{7} + \frac{43031819925}{1834525720576} a^{6} - \frac{28056271181}{458631430144} a^{5} - \frac{24130766839}{114657857536} a^{4} + \frac{12759042299}{28664464384} a^{3} + \frac{1901103565}{7166116096} a^{2} + \frac{17015285}{447882256} a - \frac{9792254}{27992641}$, $\frac{1}{29352411529216} a^{11} - \frac{1}{29352411529216} a^{10} + \frac{45}{29352411529216} a^{9} - \frac{17556987929}{29352411529216} a^{8} - \frac{122841290859}{29352411529216} a^{7} + \frac{91192341363}{7338102882304} a^{6} + \frac{27791843225}{1834525720576} a^{5} + \frac{120989687083}{458631430144} a^{4} + \frac{46495815725}{114657857536} a^{3} + \frac{1415118565}{7166116096} a^{2} + \frac{181677717}{447882256} a + \frac{13614133}{27992641}$
Class group and class number
$C_{2}\times C_{222}$, which has order $444$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{20951}{7338102882304} a^{11} - \frac{942795}{7338102882304} a^{10} + \frac{523775}{7338102882304} a^{9} - \frac{40665891}{7338102882304} a^{8} + \frac{4208695}{7338102882304} a^{7} - \frac{115838079}{458631430144} a^{6} + \frac{55415395}{114657857536} a^{5} - \frac{308000651}{28664464384} a^{4} + \frac{28388605}{1791529024} a^{3} - \frac{3447376625}{7166116096} a^{2} + \frac{921844}{27992641} a - \frac{1340864}{27992641} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 49470.5066478 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 12 |
| The 12 conjugacy class representatives for $C_{12}$ |
| Character table for $C_{12}$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 3.3.17689.2, \(\Q(\zeta_{5})\), 6.6.39112590125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/3.12.0.1}{12} }$ | R | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/13.12.0.1}{12} }$ | ${\href{/LocalNumberField/17.12.0.1}{12} }$ | R | ${\href{/LocalNumberField/23.12.0.1}{12} }$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }$ | ${\href{/LocalNumberField/47.12.0.1}{12} }$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $7$ | 7.12.8.1 | $x^{12} - 63 x^{9} + 637 x^{6} + 6174 x^{3} + 300125$ | $3$ | $4$ | $8$ | $C_{12}$ | $[\ ]_{3}^{4}$ |
| $19$ | 19.6.4.2 | $x^{6} - 19 x^{3} + 722$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
| 19.6.4.2 | $x^{6} - 19 x^{3} + 722$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |