Normalized defining polynomial
\( x^{12} - x^{11} + 398 x^{10} - 126 x^{9} + 64553 x^{8} + 12398 x^{7} + 5445884 x^{6} + 2549904 x^{5} + 252526341 x^{4} + 119660013 x^{3} + 6155914968 x^{2} + 1786052977 x + 62174703641 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(18883102336086538361328125=5^{9}\cdot 7^{8}\cdot 109^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $127.74$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 7, 109$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(3815=5\cdot 7\cdot 109\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{3815}(2944,·)$, $\chi_{3815}(1,·)$, $\chi_{3815}(2181,·)$, $\chi_{3815}(3271,·)$, $\chi_{3815}(764,·)$, $\chi_{3815}(653,·)$, $\chi_{3815}(1198,·)$, $\chi_{3815}(3378,·)$, $\chi_{3815}(219,·)$, $\chi_{3815}(1852,·)$, $\chi_{3815}(2942,·)$, $\chi_{3815}(3487,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{811} a^{9} + \frac{81}{811} a^{8} - \frac{65}{811} a^{7} - \frac{203}{811} a^{6} - \frac{233}{811} a^{5} - \frac{327}{811} a^{4} - \frac{244}{811} a^{3} - \frac{246}{811} a^{2} + \frac{159}{811} a - \frac{150}{811}$, $\frac{1}{811} a^{10} - \frac{138}{811} a^{8} + \frac{196}{811} a^{7} - \frac{10}{811} a^{6} - \frac{107}{811} a^{5} + \frac{291}{811} a^{4} + \frac{54}{811} a^{3} - \frac{190}{811} a^{2} - \frac{53}{811} a - \frac{15}{811}$, $\frac{1}{3642964378009630247065324975126517347781} a^{11} + \frac{1974927219389753775002936736498604936}{3642964378009630247065324975126517347781} a^{10} + \frac{1240698990551064891031066695327854532}{3642964378009630247065324975126517347781} a^{9} + \frac{664006373424534505284947335895669507304}{3642964378009630247065324975126517347781} a^{8} + \frac{931509063521637415556996502235899147811}{3642964378009630247065324975126517347781} a^{7} - \frac{271714812777440308056529441169966812823}{3642964378009630247065324975126517347781} a^{6} + \frac{1075158425547598260918064982060057475957}{3642964378009630247065324975126517347781} a^{5} + \frac{1556983185724607979507018147968066289639}{3642964378009630247065324975126517347781} a^{4} + \frac{1332951689643241972827682567887233541615}{3642964378009630247065324975126517347781} a^{3} - \frac{1104269151565696950064019791354214273590}{3642964378009630247065324975126517347781} a^{2} - \frac{342079296660544642698133660571537173460}{3642964378009630247065324975126517347781} a + \frac{460841275118560041690116865028310771278}{3642964378009630247065324975126517347781}$
Class group and class number
$C_{2}\times C_{92410}$, which has order $184820$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 104.882003477 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 12 |
| The 12 conjugacy class representatives for $C_{12}$ |
| Character table for $C_{12}$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{7})^+\), 4.0.1485125.1, 6.6.300125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.12.0.1}{12} }$ | ${\href{/LocalNumberField/3.12.0.1}{12} }$ | R | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/23.12.0.1}{12} }$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }$ | ${\href{/LocalNumberField/53.12.0.1}{12} }$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.12.9.2 | $x^{12} - 10 x^{8} + 25 x^{4} - 500$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ |
| $7$ | 7.12.8.1 | $x^{12} - 63 x^{9} + 637 x^{6} + 6174 x^{3} + 300125$ | $3$ | $4$ | $8$ | $C_{12}$ | $[\ ]_{3}^{4}$ |
| $109$ | 109.6.3.2 | $x^{6} - 11881 x^{2} + 12950290$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 109.6.3.2 | $x^{6} - 11881 x^{2} + 12950290$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |