Properties

Label 12.0.18821009352...1456.1
Degree $12$
Signature $[0, 6]$
Discriminant $2^{12}\cdot 11^{16}$
Root discriminant $48.93$
Ramified primes $2, 11$
Class number $4$ (GRH)
Class group $[4]$ (GRH)
Galois group $\PSL(2,11)$ (as 12T179)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![280, 408, 1100, -1144, 2090, -1210, 1023, -594, 297, -110, 33, -6, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^12 - 6*x^11 + 33*x^10 - 110*x^9 + 297*x^8 - 594*x^7 + 1023*x^6 - 1210*x^5 + 2090*x^4 - 1144*x^3 + 1100*x^2 + 408*x + 280)
 
gp: K = bnfinit(x^12 - 6*x^11 + 33*x^10 - 110*x^9 + 297*x^8 - 594*x^7 + 1023*x^6 - 1210*x^5 + 2090*x^4 - 1144*x^3 + 1100*x^2 + 408*x + 280, 1)
 

Normalized defining polynomial

\( x^{12} - 6 x^{11} + 33 x^{10} - 110 x^{9} + 297 x^{8} - 594 x^{7} + 1023 x^{6} - 1210 x^{5} + 2090 x^{4} - 1144 x^{3} + 1100 x^{2} + 408 x + 280 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $12$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(188210093521191571456=2^{12}\cdot 11^{16}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $48.93$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 11$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{4} a^{5} - \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{4} a^{6} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{8} a^{7} - \frac{1}{8} a^{6} - \frac{1}{8} a^{5} - \frac{1}{8} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2}$, $\frac{1}{16} a^{8} - \frac{1}{8} a^{6} + \frac{1}{16} a^{4} - \frac{1}{2} a^{2} + \frac{1}{4}$, $\frac{1}{48} a^{9} + \frac{1}{48} a^{8} - \frac{1}{24} a^{7} - \frac{1}{24} a^{6} - \frac{1}{16} a^{5} + \frac{5}{48} a^{4} + \frac{1}{12} a^{3} - \frac{1}{4} a^{2} - \frac{1}{4} a - \frac{5}{12}$, $\frac{1}{96} a^{10} - \frac{7}{96} a^{6} + \frac{1}{12} a^{5} - \frac{5}{48} a^{4} - \frac{5}{12} a^{3} + \frac{3}{8} a^{2} + \frac{1}{6} a - \frac{5}{12}$, $\frac{1}{41648736} a^{11} + \frac{8377}{20824368} a^{10} + \frac{16991}{6941456} a^{9} + \frac{1552}{433841} a^{8} - \frac{82579}{41648736} a^{7} + \frac{421867}{6941456} a^{6} - \frac{29153}{433841} a^{5} - \frac{288465}{3470728} a^{4} - \frac{1365809}{10412184} a^{3} - \frac{296956}{1301523} a^{2} - \frac{121264}{1301523} a - \frac{164923}{1301523}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{4}$, which has order $4$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $5$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 81117.2987813 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$\PSL(2,11)$ (as 12T179):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 660
The 8 conjugacy class representatives for $\PSL(2,11)$
Character table for $\PSL(2,11)$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.

Sibling fields

Degree 11 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/5.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/7.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ R ${\href{/LocalNumberField/13.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/17.11.0.1}{11} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ ${\href{/LocalNumberField/19.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/23.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/31.11.0.1}{11} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ ${\href{/LocalNumberField/37.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/43.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/47.11.0.1}{11} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ ${\href{/LocalNumberField/53.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/59.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.6.6.5$x^{6} - 2 x^{4} + x^{2} - 3$$2$$3$$6$$C_6$$[2]^{3}$
2.6.6.5$x^{6} - 2 x^{4} + x^{2} - 3$$2$$3$$6$$C_6$$[2]^{3}$
$11$$\Q_{11}$$x + 3$$1$$1$$0$Trivial$[\ ]$
11.11.16.4$x^{11} + 22 x^{6} + 11$$11$$1$$16$$C_{11}:C_5$$[8/5]_{5}$