Normalized defining polynomial
\( x^{12} - 2 x^{11} + 307 x^{10} - 506 x^{9} + 40532 x^{8} - 53740 x^{7} + 2941140 x^{6} - 2980318 x^{5} + 123571099 x^{4} - 86207266 x^{3} + 2848609153 x^{2} - 1041821864 x + 28128047641 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(18694897744381964174168064=2^{12}\cdot 3^{6}\cdot 7^{10}\cdot 53^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $127.64$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 53$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4452=2^{2}\cdot 3\cdot 7\cdot 53\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4452}(1,·)$, $\chi_{4452}(2755,·)$, $\chi_{4452}(211,·)$, $\chi_{4452}(1697,·)$, $\chi_{4452}(4241,·)$, $\chi_{4452}(425,·)$, $\chi_{4452}(1907,·)$, $\chi_{4452}(635,·)$, $\chi_{4452}(2545,·)$, $\chi_{4452}(4451,·)$, $\chi_{4452}(3817,·)$, $\chi_{4452}(4027,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{112017608613902180664418416498954377} a^{11} + \frac{40491741564283713851616493394343615}{112017608613902180664418416498954377} a^{10} - \frac{2168400196396595181268287361322148}{112017608613902180664418416498954377} a^{9} - \frac{21364082651895707652565114753459257}{112017608613902180664418416498954377} a^{8} - \frac{37452115828330828082979443379110568}{112017608613902180664418416498954377} a^{7} - \frac{23888034756200427319575355975806097}{112017608613902180664418416498954377} a^{6} - \frac{590053097276534580275454636444512}{112017608613902180664418416498954377} a^{5} + \frac{36342089934196470332004743171938110}{112017608613902180664418416498954377} a^{4} - \frac{51293278740547862293224979466380301}{112017608613902180664418416498954377} a^{3} + \frac{17425453383420077674267115387185237}{112017608613902180664418416498954377} a^{2} - \frac{50520554417918889640364080725171110}{112017608613902180664418416498954377} a - \frac{12509893870215744820391555634156497}{112017608613902180664418416498954377}$
Class group and class number
$C_{26}\times C_{6552}$, which has order $170352$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 140.7987960054707 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_6$ (as 12T2):
| An abelian group of order 12 |
| The 12 conjugacy class representatives for $C_6\times C_2$ |
| Character table for $C_6\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{-1113}) \), \(\Q(\sqrt{21}) \), \(\Q(\sqrt{-53}) \), \(\Q(\zeta_{7})^+\), \(\Q(\sqrt{21}, \sqrt{-53})\), 6.0.4323759676992.3, \(\Q(\zeta_{21})^+\), 6.0.22877035328.4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}$ | R | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.12.12.26 | $x^{12} - 162 x^{10} + 26423 x^{8} + 125508 x^{6} - 64481 x^{4} - 122498 x^{2} - 86071$ | $2$ | $6$ | $12$ | $C_6\times C_2$ | $[2]^{6}$ |
| $3$ | 3.6.3.1 | $x^{6} - 6 x^{4} + 9 x^{2} - 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 3.6.3.1 | $x^{6} - 6 x^{4} + 9 x^{2} - 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $7$ | 7.12.10.1 | $x^{12} - 70 x^{6} + 35721$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ |
| $53$ | 53.12.6.1 | $x^{12} + 2382032 x^{6} - 418195493 x^{2} + 1418519112256$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |