Normalized defining polynomial
\( x^{12} - 6 x^{11} + 241 x^{10} - 1150 x^{9} + 24665 x^{8} - 91826 x^{7} + 1372757 x^{6} - 3801644 x^{5} + 43884395 x^{4} - 81537580 x^{3} + 765535945 x^{2} - 725385798 x + 5718892873 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(18694897744381964174168064=2^{12}\cdot 3^{6}\cdot 7^{10}\cdot 53^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $127.64$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 53$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4452=2^{2}\cdot 3\cdot 7\cdot 53\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4452}(1,·)$, $\chi_{4452}(4451,·)$, $\chi_{4452}(4135,·)$, $\chi_{4452}(3817,·)$, $\chi_{4452}(3499,·)$, $\chi_{4452}(635,·)$, $\chi_{4452}(2545,·)$, $\chi_{4452}(1907,·)$, $\chi_{4452}(3497,·)$, $\chi_{4452}(953,·)$, $\chi_{4452}(955,·)$, $\chi_{4452}(317,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{19177256309149} a^{10} - \frac{5}{19177256309149} a^{9} - \frac{6847698823770}{19177256309149} a^{8} + \frac{8213538985961}{19177256309149} a^{7} - \frac{5905304493295}{19177256309149} a^{6} - \frac{1442844816425}{19177256309149} a^{5} - \frac{9126545899966}{19177256309149} a^{4} + \frac{7866829616931}{19177256309149} a^{3} + \frac{4194764557}{19177256309149} a^{2} + \frac{7237830666011}{19177256309149} a - \frac{1567888851821}{19177256309149}$, $\frac{1}{91352989104081577039} a^{11} + \frac{2381800}{91352989104081577039} a^{10} + \frac{21910046840004618003}{91352989104081577039} a^{9} - \frac{23552108396791711292}{91352989104081577039} a^{8} + \frac{21423523839984436545}{91352989104081577039} a^{7} - \frac{40069146158039320026}{91352989104081577039} a^{6} + \frac{18142604360082556010}{91352989104081577039} a^{5} - \frac{12348977887399898322}{91352989104081577039} a^{4} + \frac{12366032610873151040}{91352989104081577039} a^{3} - \frac{15608381088783395482}{91352989104081577039} a^{2} - \frac{17500902824836427595}{91352989104081577039} a - \frac{31792246490244926676}{91352989104081577039}$
Class group and class number
$C_{2}\times C_{14}\times C_{5460}$, which has order $152880$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 246.50546308257188 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_6$ (as 12T2):
| An abelian group of order 12 |
| The 12 conjugacy class representatives for $C_6\times C_2$ |
| Character table for $C_6\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{-1113}) \), \(\Q(\sqrt{7}) \), \(\Q(\sqrt{-159}) \), \(\Q(\zeta_{7})^+\), \(\Q(\sqrt{7}, \sqrt{-159})\), 6.0.4323759676992.3, \(\Q(\zeta_{28})^+\), 6.0.9651249279.4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}$ | R | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.6.3 | $x^{6} + 2 x^{4} + x^{2} - 7$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ |
| 2.6.6.3 | $x^{6} + 2 x^{4} + x^{2} - 7$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| $3$ | 3.6.3.1 | $x^{6} - 6 x^{4} + 9 x^{2} - 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 3.6.3.1 | $x^{6} - 6 x^{4} + 9 x^{2} - 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $7$ | 7.6.5.2 | $x^{6} - 7$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |
| 7.6.5.2 | $x^{6} - 7$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| $53$ | 53.6.3.2 | $x^{6} - 2809 x^{2} + 1191016$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 53.6.3.2 | $x^{6} - 2809 x^{2} + 1191016$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |