Normalized defining polynomial
\( x^{12} - 6 x^{11} + 177 x^{10} - 830 x^{9} + 11814 x^{8} - 42342 x^{7} + 367625 x^{6} - 958098 x^{5} + 5597562 x^{4} - 9646066 x^{3} + 38478141 x^{2} - 33807978 x + 119894041 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(186694177220038656000000=2^{18}\cdot 3^{18}\cdot 5^{6}\cdot 7^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $86.95$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(2520=2^{3}\cdot 3^{2}\cdot 5\cdot 7\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{2520}(1,·)$, $\chi_{2520}(1091,·)$, $\chi_{2520}(1681,·)$, $\chi_{2520}(841,·)$, $\chi_{2520}(1931,·)$, $\chi_{2520}(419,·)$, $\chi_{2520}(1849,·)$, $\chi_{2520}(1009,·)$, $\chi_{2520}(2099,·)$, $\chi_{2520}(1259,·)$, $\chi_{2520}(169,·)$, $\chi_{2520}(251,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{14} a^{4} - \frac{1}{7} a^{3} - \frac{1}{14} a^{2} + \frac{1}{7} a + \frac{1}{14}$, $\frac{1}{14} a^{5} - \frac{5}{14} a^{3} + \frac{5}{14} a + \frac{1}{7}$, $\frac{1}{14} a^{6} + \frac{2}{7} a^{3} - \frac{1}{7} a + \frac{5}{14}$, $\frac{1}{14} a^{7} - \frac{3}{7} a^{3} + \frac{1}{7} a^{2} - \frac{3}{14} a - \frac{2}{7}$, $\frac{1}{196} a^{8} - \frac{1}{49} a^{7} + \frac{1}{98} a^{6} - \frac{3}{98} a^{5} - \frac{5}{196} a^{4} + \frac{31}{98} a^{3} + \frac{1}{98} a^{2} - \frac{33}{98} a - \frac{27}{196}$, $\frac{1}{196} a^{9} + \frac{1}{98} a^{6} - \frac{1}{196} a^{5} - \frac{43}{98} a^{3} + \frac{3}{49} a^{2} - \frac{81}{196} a + \frac{23}{98}$, $\frac{1}{604122442756} a^{10} - \frac{5}{604122442756} a^{9} + \frac{30158871}{21575801527} a^{8} - \frac{1688896761}{302061221378} a^{7} + \frac{13581018307}{604122442756} a^{6} + \frac{14230825439}{604122442756} a^{5} + \frac{5476018001}{302061221378} a^{4} - \frac{48350387587}{151030610689} a^{3} + \frac{2875561667}{604122442756} a^{2} + \frac{197447057125}{604122442756} a - \frac{29681509464}{151030610689}$, $\frac{1}{408684603667334708} a^{11} + \frac{338241}{408684603667334708} a^{10} - \frac{166245963462287}{102171150916833677} a^{9} - \frac{892192011447643}{408684603667334708} a^{8} - \frac{14120497968953211}{408684603667334708} a^{7} + \frac{13115589158846649}{408684603667334708} a^{6} + \frac{297543529544299}{29191757404809622} a^{5} - \frac{12125719417252345}{408684603667334708} a^{4} - \frac{141070244552660757}{408684603667334708} a^{3} + \frac{133590666344531407}{408684603667334708} a^{2} - \frac{96461527423941485}{204342301833667354} a - \frac{143208805787802009}{408684603667334708}$
Class group and class number
$C_{4}\times C_{3484}$, which has order $13936$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 201.0008347866989 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_6$ (as 12T2):
| An abelian group of order 12 |
| The 12 conjugacy class representatives for $C_6\times C_2$ |
| Character table for $C_6\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{-42}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-210}) \), \(\Q(\zeta_{9})^+\), \(\Q(\sqrt{5}, \sqrt{-42})\), 6.0.3456649728.1, 6.6.820125.1, 6.0.432081216000.29 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.12.18.15 | $x^{12} - 16 x^{10} + 24 x^{6} + 64 x^{4} + 64$ | $2$ | $6$ | $18$ | $C_6\times C_2$ | $[3]^{6}$ |
| $3$ | 3.12.18.82 | $x^{12} - 9 x^{9} + 9 x^{8} - 9 x^{5} - 9 x^{4} - 9 x^{3} + 9$ | $6$ | $2$ | $18$ | $C_6\times C_2$ | $[2]_{2}^{2}$ |
| $5$ | 5.12.6.1 | $x^{12} + 500 x^{6} - 3125 x^{2} + 62500$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |
| $7$ | 7.12.6.1 | $x^{12} + 294 x^{8} + 3430 x^{6} + 21609 x^{4} + 487403 x^{2} + 2941225$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |