Properties

Label 12.0.18488425889...416.52
Degree $12$
Signature $[0, 6]$
Discriminant $2^{32}\cdot 3^{16}$
Root discriminant $27.47$
Ramified primes $2, 3$
Class number $3$
Class group $[3]$
Galois group $S_3\wr C_2$ (as 12T34)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![4624, 3264, 1152, -656, -735, -144, 128, 48, 18, -16, 0, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^12 - 16*x^9 + 18*x^8 + 48*x^7 + 128*x^6 - 144*x^5 - 735*x^4 - 656*x^3 + 1152*x^2 + 3264*x + 4624)
 
gp: K = bnfinit(x^12 - 16*x^9 + 18*x^8 + 48*x^7 + 128*x^6 - 144*x^5 - 735*x^4 - 656*x^3 + 1152*x^2 + 3264*x + 4624, 1)
 

Normalized defining polynomial

\( x^{12} - 16 x^{9} + 18 x^{8} + 48 x^{7} + 128 x^{6} - 144 x^{5} - 735 x^{4} - 656 x^{3} + 1152 x^{2} + 3264 x + 4624 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $12$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(184884258895036416=2^{32}\cdot 3^{16}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $27.47$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{12} a^{6} + \frac{1}{3} a^{3} - \frac{1}{4} a^{2} - \frac{1}{3}$, $\frac{1}{24} a^{7} - \frac{1}{3} a^{4} + \frac{3}{8} a^{3} + \frac{1}{3} a$, $\frac{1}{24} a^{8} + \frac{1}{6} a^{5} + \frac{3}{8} a^{4} + \frac{1}{3} a^{2} - \frac{1}{2} a$, $\frac{1}{24} a^{9} - \frac{1}{8} a^{5} - \frac{1}{3} a^{3} - \frac{1}{2} a - \frac{1}{3}$, $\frac{1}{24} a^{10} - \frac{1}{24} a^{6} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{4} a^{2} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{89297320656} a^{11} - \frac{23164837}{5252783568} a^{10} - \frac{35703275}{1750927856} a^{9} + \frac{1072654271}{89297320656} a^{8} - \frac{1045420915}{89297320656} a^{7} - \frac{2850569353}{89297320656} a^{6} - \frac{173935123}{29765773552} a^{5} + \frac{12149288853}{29765773552} a^{4} - \frac{10625609893}{22324330164} a^{3} + \frac{420547043}{22324330164} a^{2} - \frac{3042138551}{11162165082} a + \frac{8242292}{328298973}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{3}$, which has order $3$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $5$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( \frac{7032573}{14882886776} a^{11} - \frac{71633}{218865982} a^{10} - \frac{143584}{328298973} a^{9} - \frac{7843095}{1860360847} a^{8} + \frac{24796599}{1860360847} a^{7} + \frac{35123693}{1860360847} a^{6} - \frac{3062988}{1860360847} a^{5} - \frac{88959687}{1860360847} a^{4} - \frac{11336955991}{44648660328} a^{3} + \frac{519704919}{3720721694} a^{2} + \frac{867518468}{1860360847} a + \frac{102160634}{328298973} \) (order $8$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 19600.8699415 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$S_3\wr C_2$ (as 12T34):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 72
The 9 conjugacy class representatives for $S_3\wr C_2$
Character table for $S_3\wr C_2$

Intermediate fields

\(\Q(\sqrt{2}) \), \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-2}) \), \(\Q(\zeta_{8})\), 6.0.107495424.4

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 6 siblings: data not computed
Degree 9 sibling: data not computed
Degree 12 siblings: data not computed
Degree 18 siblings: data not computed
Degree 24 siblings: data not computed
Degree 36 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{3}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/17.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/19.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.4.8.2$x^{4} + 6 x^{2} + 1$$4$$1$$8$$C_2^2$$[2, 3]$
2.8.24.14$x^{8} + 12 x^{6} + 6 x^{4} + 4 x^{2} + 8 x + 2$$8$$1$$24$$D_4$$[2, 3, 4]$
$3$3.6.8.3$x^{6} + 18 x^{2} + 9$$3$$2$$8$$C_6$$[2]^{2}$
3.6.8.5$x^{6} + 9 x^{2} + 9$$3$$2$$8$$S_3$$[2]^{2}$