Normalized defining polynomial
\( x^{12} - 18 x^{8} - 72 x^{7} + 432 x^{5} + 1161 x^{4} + 1944 x^{3} + 2592 x^{2} + 2592 x + 1296 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(184884258895036416=2^{32}\cdot 3^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $27.47$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{3} a^{3}$, $\frac{1}{6} a^{4} - \frac{1}{6} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{6} a^{5} - \frac{1}{2} a$, $\frac{1}{18} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{18} a^{7} - \frac{1}{6} a^{3}$, $\frac{1}{36} a^{8} - \frac{1}{36} a^{6} - \frac{1}{12} a^{4} - \frac{1}{6} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{108} a^{9} - \frac{1}{36} a^{7} - \frac{1}{12} a^{5} - \frac{1}{12} a^{3}$, $\frac{1}{108} a^{10} + \frac{1}{4} a^{2}$, $\frac{1}{282744} a^{11} - \frac{20}{11781} a^{10} + \frac{2}{35343} a^{9} + \frac{29}{47124} a^{8} - \frac{7}{396} a^{7} + \frac{53}{4284} a^{6} + \frac{22}{357} a^{5} + \frac{79}{15708} a^{4} - \frac{2407}{31416} a^{3} - \frac{2445}{5236} a^{2} - \frac{131}{374} a + \frac{180}{1309}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{349}{282744} a^{11} + \frac{4}{35343} a^{10} + \frac{29}{23562} a^{9} - \frac{39}{5236} a^{8} - \frac{1}{396} a^{7} - \frac{181}{1428} a^{6} + \frac{5}{714} a^{5} + \frac{9245}{15708} a^{4} + \frac{50077}{31416} a^{3} + \frac{13253}{5236} a^{2} + \frac{609}{187} a + \frac{3915}{1309} \) (order $8$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 73493.7125622 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$S_3\wr C_2$ (as 12T34):
| A solvable group of order 72 |
| The 9 conjugacy class representatives for $S_3\wr C_2$ |
| Character table for $S_3\wr C_2$ |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-2}) \), \(\Q(\zeta_{8})\), 6.0.107495424.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 6 siblings: | data not computed |
| Degree 9 sibling: | data not computed |
| Degree 12 siblings: | data not computed |
| Degree 18 siblings: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 36 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.8.2 | $x^{4} + 6 x^{2} + 1$ | $4$ | $1$ | $8$ | $C_2^2$ | $[2, 3]$ |
| 2.8.24.3 | $x^{8} + 2 x^{4} + 8 x^{3} + 12 x^{2} + 8 x + 18$ | $8$ | $1$ | $24$ | $D_4$ | $[2, 3, 4]$ | |
| $3$ | 3.6.10.1 | $x^{6} - 18$ | $3$ | $2$ | $10$ | $D_{6}$ | $[5/2]_{2}^{2}$ |
| 3.6.6.4 | $x^{6} + 3 x^{4} + 6 x^{3} + 9 x^{2} + 63 x + 9$ | $3$ | $2$ | $6$ | $D_{6}$ | $[3/2]_{2}^{2}$ |