Normalized defining polynomial
\( x^{12} - 4 x^{11} + 100 x^{10} - 316 x^{9} + 4307 x^{8} - 10660 x^{7} + 101974 x^{6} - 189064 x^{5} + \cdots + 35851369 \)
Invariants
Degree: | $12$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 6]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(179210946875957470035968\) \(\medspace = 2^{18}\cdot 7^{8}\cdot 17^{9}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(86.65\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2^{3/2}7^{2/3}17^{3/4}\approx 86.6523565155333$ | ||
Ramified primes: | \(2\), \(7\), \(17\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{17}) \) | ||
$\card{ \Gal(K/\Q) }$: | $12$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is Galois and abelian over $\Q$. | |||
Conductor: | \(952=2^{3}\cdot 7\cdot 17\) | ||
Dirichlet character group: | $\lbrace$$\chi_{952}(1,·)$, $\chi_{952}(387,·)$, $\chi_{952}(667,·)$, $\chi_{952}(849,·)$, $\chi_{952}(795,·)$, $\chi_{952}(169,·)$, $\chi_{952}(939,·)$, $\chi_{952}(305,·)$, $\chi_{952}(659,·)$, $\chi_{952}(681,·)$, $\chi_{952}(137,·)$, $\chi_{952}(123,·)$$\rbrace$ | ||
This is a CM field. | |||
Reflex fields: | 4.0.314432.2$^{2}$, 12.0.179210946875957470035968.1$^{30}$ |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2}a^{6}-\frac{1}{2}a^{4}-\frac{1}{2}$, $\frac{1}{2}a^{7}-\frac{1}{2}a^{5}-\frac{1}{2}a$, $\frac{1}{2}a^{8}-\frac{1}{2}a^{4}-\frac{1}{2}a^{2}-\frac{1}{2}$, $\frac{1}{4}a^{9}-\frac{1}{4}a^{8}-\frac{1}{4}a^{7}-\frac{1}{4}a^{4}-\frac{1}{4}a^{3}-\frac{1}{4}a^{2}-\frac{1}{2}a-\frac{1}{4}$, $\frac{1}{167536036}a^{10}+\frac{10275849}{83768018}a^{9}-\frac{3951875}{83768018}a^{8}+\frac{41624113}{167536036}a^{7}-\frac{992785}{41884009}a^{6}+\frac{62534063}{167536036}a^{5}-\frac{13434177}{83768018}a^{4}+\frac{6448224}{41884009}a^{3}+\frac{69814037}{167536036}a^{2}+\frac{76700853}{167536036}a-\frac{20667965}{167536036}$, $\frac{1}{20\!\cdots\!72}a^{11}+\frac{40045864735}{20\!\cdots\!72}a^{10}-\frac{28\!\cdots\!75}{52\!\cdots\!93}a^{9}-\frac{80\!\cdots\!25}{20\!\cdots\!72}a^{8}+\frac{25\!\cdots\!17}{20\!\cdots\!72}a^{7}-\frac{19\!\cdots\!63}{20\!\cdots\!72}a^{6}+\frac{57\!\cdots\!41}{20\!\cdots\!72}a^{5}-\frac{59\!\cdots\!85}{52\!\cdots\!93}a^{4}-\frac{98\!\cdots\!63}{20\!\cdots\!72}a^{3}+\frac{24\!\cdots\!85}{10\!\cdots\!86}a^{2}+\frac{71\!\cdots\!71}{52\!\cdots\!93}a-\frac{96\!\cdots\!47}{20\!\cdots\!72}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
$C_{2}\times C_{1082}$, which has order $2164$ (assuming GRH)
Relative class number: $2164$ (assuming GRH)
Unit group
Rank: | $5$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{3949912542168}{52\!\cdots\!93}a^{11}-\frac{15722063860456}{52\!\cdots\!93}a^{10}+\frac{297653402666344}{52\!\cdots\!93}a^{9}-\frac{949805556041429}{52\!\cdots\!93}a^{8}+\frac{92\!\cdots\!12}{52\!\cdots\!93}a^{7}-\frac{24\!\cdots\!72}{52\!\cdots\!93}a^{6}+\frac{14\!\cdots\!40}{52\!\cdots\!93}a^{5}-\frac{30\!\cdots\!84}{52\!\cdots\!93}a^{4}+\frac{94\!\cdots\!12}{52\!\cdots\!93}a^{3}-\frac{17\!\cdots\!04}{52\!\cdots\!93}a^{2}+\frac{16\!\cdots\!88}{52\!\cdots\!93}a-\frac{81\!\cdots\!59}{52\!\cdots\!93}$, $\frac{3949912542168}{52\!\cdots\!93}a^{11}-\frac{15722063860456}{52\!\cdots\!93}a^{10}+\frac{297653402666344}{52\!\cdots\!93}a^{9}-\frac{949805556041429}{52\!\cdots\!93}a^{8}+\frac{92\!\cdots\!12}{52\!\cdots\!93}a^{7}-\frac{24\!\cdots\!72}{52\!\cdots\!93}a^{6}+\frac{14\!\cdots\!40}{52\!\cdots\!93}a^{5}-\frac{30\!\cdots\!84}{52\!\cdots\!93}a^{4}+\frac{94\!\cdots\!12}{52\!\cdots\!93}a^{3}-\frac{17\!\cdots\!04}{52\!\cdots\!93}a^{2}+\frac{16\!\cdots\!88}{52\!\cdots\!93}a-\frac{29\!\cdots\!66}{52\!\cdots\!93}$, $\frac{2505229883270}{52\!\cdots\!93}a^{11}-\frac{78156107983495}{52\!\cdots\!93}a^{10}+\frac{381425283913983}{52\!\cdots\!93}a^{9}-\frac{10\!\cdots\!23}{10\!\cdots\!86}a^{8}+\frac{16\!\cdots\!56}{52\!\cdots\!93}a^{7}-\frac{16\!\cdots\!37}{52\!\cdots\!93}a^{6}+\frac{30\!\cdots\!30}{52\!\cdots\!93}a^{5}-\frac{48\!\cdots\!05}{10\!\cdots\!86}a^{4}+\frac{25\!\cdots\!40}{52\!\cdots\!93}a^{3}-\frac{37\!\cdots\!33}{10\!\cdots\!86}a^{2}+\frac{77\!\cdots\!10}{52\!\cdots\!93}a-\frac{13\!\cdots\!95}{10\!\cdots\!86}$, $\frac{5092803665086}{52\!\cdots\!93}a^{11}+\frac{28683463264457}{52\!\cdots\!93}a^{10}+\frac{257727004553937}{52\!\cdots\!93}a^{9}+\frac{34\!\cdots\!51}{10\!\cdots\!86}a^{8}+\frac{68\!\cdots\!40}{52\!\cdots\!93}a^{7}+\frac{40\!\cdots\!99}{52\!\cdots\!93}a^{6}+\frac{11\!\cdots\!22}{52\!\cdots\!93}a^{5}+\frac{55\!\cdots\!51}{10\!\cdots\!86}a^{4}+\frac{13\!\cdots\!76}{52\!\cdots\!93}a^{3}-\frac{33\!\cdots\!31}{10\!\cdots\!86}a^{2}+\frac{77\!\cdots\!78}{52\!\cdots\!93}a-\frac{40\!\cdots\!93}{10\!\cdots\!86}$, $\frac{149841796626}{52\!\cdots\!93}a^{11}-\frac{51606544465274}{52\!\cdots\!93}a^{10}+\frac{108408951570723}{52\!\cdots\!93}a^{9}-\frac{38\!\cdots\!36}{52\!\cdots\!93}a^{8}+\frac{59\!\cdots\!10}{52\!\cdots\!93}a^{7}-\frac{26\!\cdots\!95}{10\!\cdots\!86}a^{6}+\frac{16\!\cdots\!66}{52\!\cdots\!93}a^{5}-\frac{50\!\cdots\!47}{10\!\cdots\!86}a^{4}+\frac{19\!\cdots\!60}{52\!\cdots\!93}a^{3}-\frac{26\!\cdots\!24}{52\!\cdots\!93}a^{2}+\frac{10\!\cdots\!97}{52\!\cdots\!93}a-\frac{24\!\cdots\!61}{10\!\cdots\!86}$ (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 1059.54542703 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{6}\cdot 1059.54542703 \cdot 2164}{2\cdot\sqrt{179210946875957470035968}}\cr\approx \mathstrut & 0.166626389914 \end{aligned}\] (assuming GRH)
Galois group
A cyclic group of order 12 |
The 12 conjugacy class representatives for $C_{12}$ |
Character table for $C_{12}$ |
Intermediate fields
\(\Q(\sqrt{17}) \), \(\Q(\zeta_{7})^+\), 4.0.314432.2, 6.6.11796113.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.12.0.1}{12} }$ | ${\href{/padicField/5.12.0.1}{12} }$ | R | ${\href{/padicField/11.12.0.1}{12} }$ | ${\href{/padicField/13.2.0.1}{2} }^{6}$ | R | ${\href{/padicField/19.6.0.1}{6} }^{2}$ | ${\href{/padicField/23.12.0.1}{12} }$ | ${\href{/padicField/29.4.0.1}{4} }^{3}$ | ${\href{/padicField/31.12.0.1}{12} }$ | ${\href{/padicField/37.12.0.1}{12} }$ | ${\href{/padicField/41.4.0.1}{4} }^{3}$ | ${\href{/padicField/43.2.0.1}{2} }^{6}$ | ${\href{/padicField/47.6.0.1}{6} }^{2}$ | ${\href{/padicField/53.3.0.1}{3} }^{4}$ | ${\href{/padicField/59.6.0.1}{6} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\) | 2.6.9.7 | $x^{6} + 32 x^{4} + 2 x^{3} + 301 x^{2} - 58 x + 811$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ |
2.6.9.7 | $x^{6} + 32 x^{4} + 2 x^{3} + 301 x^{2} - 58 x + 811$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ | |
\(7\) | 7.12.8.1 | $x^{12} + 15 x^{10} + 40 x^{9} + 84 x^{8} + 120 x^{7} + 53 x^{6} + 414 x^{5} - 1293 x^{4} - 1830 x^{3} + 10968 x^{2} - 13836 x + 12004$ | $3$ | $4$ | $8$ | $C_{12}$ | $[\ ]_{3}^{4}$ |
\(17\) | 17.12.9.1 | $x^{12} + 4 x^{10} + 56 x^{9} + 57 x^{8} + 168 x^{7} + 1044 x^{6} - 11256 x^{5} + 3356 x^{4} + 10080 x^{3} + 97736 x^{2} + 58576 x + 57252$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ |