Normalized defining polynomial
\( x^{12} - 2 x^{11} + 47 x^{10} - 96 x^{9} + 1107 x^{8} - 2310 x^{7} + 14855 x^{6} - 30618 x^{5} + 133099 x^{4} - 198676 x^{3} + 663283 x^{2} - 229794 x + 1573111 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1787367473421924696064=2^{18}\cdot 7^{10}\cdot 17^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $59.02$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(952=2^{3}\cdot 7\cdot 17\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{952}(1,·)$, $\chi_{952}(477,·)$, $\chi_{952}(101,·)$, $\chi_{952}(577,·)$, $\chi_{952}(137,·)$, $\chi_{952}(205,·)$, $\chi_{952}(681,·)$, $\chi_{952}(237,·)$, $\chi_{952}(713,·)$, $\chi_{952}(33,·)$, $\chi_{952}(509,·)$, $\chi_{952}(613,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{181} a^{8} - \frac{76}{181} a^{7} + \frac{20}{181} a^{6} - \frac{43}{181} a^{5} + \frac{27}{181} a^{4} - \frac{68}{181} a^{3} - \frac{16}{181} a^{2} + \frac{60}{181} a + \frac{38}{181}$, $\frac{1}{181} a^{9} + \frac{36}{181} a^{7} + \frac{29}{181} a^{6} + \frac{17}{181} a^{5} - \frac{7}{181} a^{4} + \frac{65}{181} a^{3} - \frac{70}{181} a^{2} + \frac{73}{181} a - \frac{8}{181}$, $\frac{1}{7421} a^{10} - \frac{5}{7421} a^{9} - \frac{2}{7421} a^{8} + \frac{927}{7421} a^{7} + \frac{3456}{7421} a^{6} + \frac{3352}{7421} a^{5} + \frac{341}{7421} a^{4} + \frac{3275}{7421} a^{3} + \frac{1574}{7421} a^{2} - \frac{2834}{7421} a - \frac{3033}{7421}$, $\frac{1}{2168939639047245076643} a^{11} - \frac{104068034795338699}{2168939639047245076643} a^{10} + \frac{3862099248472341628}{2168939639047245076643} a^{9} - \frac{3452935126408114098}{2168939639047245076643} a^{8} + \frac{220331699314883318227}{2168939639047245076643} a^{7} - \frac{323305565742519055275}{2168939639047245076643} a^{6} - \frac{470566235393441600405}{2168939639047245076643} a^{5} - \frac{775290896747360465874}{2168939639047245076643} a^{4} + \frac{233356961843416337663}{2168939639047245076643} a^{3} - \frac{19514263397599885871}{52900966806030367723} a^{2} + \frac{117598370431142093389}{2168939639047245076643} a + \frac{954853527833401104435}{2168939639047245076643}$
Class group and class number
$C_{2}\times C_{2}\times C_{430}$, which has order $1720$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 279.1500271937239 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_6$ (as 12T2):
| An abelian group of order 12 |
| The 12 conjugacy class representatives for $C_6\times C_2$ |
| Character table for $C_6\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{-238}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{-119}) \), \(\Q(\zeta_{7})^+\), \(\Q(\sqrt{2}, \sqrt{-119})\), 6.0.42277268992.6, 6.6.1229312.1, 6.0.82572791.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{6}$ | R | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/41.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.9.1 | $x^{6} + 4 x^{4} + 4 x^{2} - 8$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ |
| 2.6.9.1 | $x^{6} + 4 x^{4} + 4 x^{2} - 8$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ | |
| $7$ | 7.6.5.2 | $x^{6} - 7$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |
| 7.6.5.2 | $x^{6} - 7$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| $17$ | 17.6.3.2 | $x^{6} - 289 x^{2} + 14739$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 17.6.3.2 | $x^{6} - 289 x^{2} + 14739$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |