Normalized defining polynomial
\( x^{12} - x^{11} + 2 x^{10} + 20 x^{9} - 13 x^{8} + 19 x^{7} + 85 x^{6} - 51 x^{5} + 94 x^{4} + 2 x^{3} - 13 x^{2} + 77 x + 47 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(177917621779460413=37^{11}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $27.39$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(37\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{37}(1,·)$, $\chi_{37}(36,·)$, $\chi_{37}(6,·)$, $\chi_{37}(8,·)$, $\chi_{37}(10,·)$, $\chi_{37}(11,·)$, $\chi_{37}(14,·)$, $\chi_{37}(23,·)$, $\chi_{37}(26,·)$, $\chi_{37}(27,·)$, $\chi_{37}(29,·)$, $\chi_{37}(31,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{142678764847} a^{11} - \frac{48161374864}{142678764847} a^{10} + \frac{22722766725}{142678764847} a^{9} - \frac{28963069316}{142678764847} a^{8} - \frac{4947706371}{142678764847} a^{7} + \frac{30690122013}{142678764847} a^{6} + \frac{29864583088}{142678764847} a^{5} + \frac{44110441508}{142678764847} a^{4} + \frac{14052599801}{142678764847} a^{3} + \frac{51092855327}{142678764847} a^{2} - \frac{53986732521}{142678764847} a - \frac{1332748967}{3035718401}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2518.23324049 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 12 |
| The 12 conjugacy class representatives for $C_{12}$ |
| Character table for $C_{12}$ |
Intermediate fields
| \(\Q(\sqrt{37}) \), 3.3.1369.1, 4.0.50653.1, 6.6.69343957.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.12.0.1}{12} }$ | ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/5.12.0.1}{12} }$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/13.12.0.1}{12} }$ | ${\href{/LocalNumberField/17.12.0.1}{12} }$ | ${\href{/LocalNumberField/19.12.0.1}{12} }$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}$ | R | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/47.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $37$ | 37.12.11.4 | $x^{12} - 2368$ | $12$ | $1$ | $11$ | $C_{12}$ | $[\ ]_{12}$ |