Normalized defining polynomial
\( x^{12} - 4 x^{11} + 8 x^{10} + 10 x^{9} - 30 x^{8} + 46 x^{7} + 106 x^{6} - 226 x^{5} + 225 x^{4} + 20 x^{3} + 98 x^{2} - 266 x + 361 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1776132919332864=2^{12}\cdot 3^{6}\cdot 29^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $18.65$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{6} a^{8} - \frac{1}{6} a^{4} - \frac{1}{2} a^{2} - \frac{1}{3}$, $\frac{1}{6} a^{9} - \frac{1}{6} a^{5} - \frac{1}{2} a^{3} - \frac{1}{3} a$, $\frac{1}{4890} a^{10} - \frac{407}{4890} a^{9} + \frac{53}{978} a^{8} - \frac{67}{815} a^{7} + \frac{133}{2445} a^{6} + \frac{1931}{4890} a^{5} + \frac{382}{2445} a^{4} + \frac{211}{1630} a^{3} + \frac{88}{489} a^{2} - \frac{1021}{2445} a - \frac{71}{4890}$, $\frac{1}{3592179330} a^{11} - \frac{508}{11018955} a^{10} - \frac{172727453}{3592179330} a^{9} + \frac{51726764}{1796089665} a^{8} + \frac{384292864}{1796089665} a^{7} + \frac{159893221}{718435866} a^{6} - \frac{48391826}{1796089665} a^{5} + \frac{273673132}{1796089665} a^{4} + \frac{845010986}{1796089665} a^{3} - \frac{32582707}{87614130} a^{2} - \frac{442575509}{3592179330} a - \frac{41819291}{189062070}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{41311}{22037910} a^{11} + \frac{43409}{7345970} a^{10} - \frac{14387}{2203791} a^{9} - \frac{442364}{11018955} a^{8} + \frac{1097989}{22037910} a^{7} + \frac{9259}{3672985} a^{6} - \frac{7923739}{22037910} a^{5} + \frac{5261527}{22037910} a^{4} + \frac{228467}{2203791} a^{3} - \frac{149881}{179170} a^{2} - \frac{3786337}{11018955} a + \frac{85165}{231978} \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 595.852174029 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 12 |
| The 6 conjugacy class representatives for $D_6$ |
| Character table for $D_6$ |
Intermediate fields
| \(\Q(\sqrt{-87}) \), \(\Q(\sqrt{87}) \), \(\Q(\sqrt{-1}) \), 3.1.87.1 x3, \(\Q(i, \sqrt{87})\), 6.0.658503.1, 6.2.42144192.1 x3, 6.0.484416.2 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 6 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{6}$ | R | ${\href{/LocalNumberField/31.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/41.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.6.3 | $x^{6} + 2 x^{4} + x^{2} - 7$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ |
| 2.6.6.3 | $x^{6} + 2 x^{4} + x^{2} - 7$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| $3$ | 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $29$ | 29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |