Normalized defining polynomial
\( x^{12} - 4 x^{11} + 2 x^{10} + 12 x^{9} - 4 x^{8} - 34 x^{7} + 15 x^{6} + 44 x^{5} + 34 x^{4} - 14 x^{3} + 15 x^{2} - 4 x + 1 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1776132919332864=2^{12}\cdot 3^{6}\cdot 29^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $18.65$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2} + \frac{1}{4}$, $\frac{1}{8} a^{9} - \frac{1}{8} a^{8} - \frac{1}{8} a^{5} + \frac{3}{8} a^{4} - \frac{1}{8} a^{3} - \frac{1}{8} a^{2} - \frac{3}{8} a + \frac{3}{8}$, $\frac{1}{176} a^{10} - \frac{5}{88} a^{9} + \frac{1}{176} a^{8} + \frac{23}{176} a^{6} + \frac{1}{44} a^{5} - \frac{1}{44} a^{4} - \frac{1}{2} a^{3} + \frac{7}{88} a^{2} + \frac{39}{88} a + \frac{13}{176}$, $\frac{1}{352} a^{11} - \frac{1}{352} a^{10} - \frac{1}{352} a^{9} + \frac{9}{352} a^{8} + \frac{23}{352} a^{7} + \frac{35}{352} a^{6} + \frac{15}{44} a^{5} + \frac{13}{88} a^{4} - \frac{81}{176} a^{3} - \frac{37}{88} a^{2} - \frac{7}{32} a + \frac{117}{352}$
Class group and class number
$C_{6}$, which has order $6$
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 121.324729719 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 36 |
| The 9 conjugacy class representatives for $S_3^2$ |
| Character table for $S_3^2$ |
Intermediate fields
| \(\Q(\sqrt{-87}) \), \(\Q(\sqrt{3}) \), \(\Q(\sqrt{-29}) \), \(\Q(\sqrt{3}, \sqrt{-29})\), 6.2.1453248.5 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 6 sibling: | data not computed |
| Degree 9 sibling: | data not computed |
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{6}$ | R | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.6.5 | $x^{6} - 2 x^{4} + x^{2} - 3$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ |
| 2.6.6.5 | $x^{6} - 2 x^{4} + x^{2} - 3$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| $3$ | 3.6.3.1 | $x^{6} - 6 x^{4} + 9 x^{2} - 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 3.6.3.1 | $x^{6} - 6 x^{4} + 9 x^{2} - 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $29$ | 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |