Normalized defining polynomial
\( x^{12} - 3 x^{11} - 3 x^{10} + 18 x^{9} - 39 x^{8} - 216 x^{7} + 78 x^{6} + 1647 x^{5} + 2997 x^{4} + \cdots + 6561 \)
Invariants
Degree: | $12$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 6]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(1772506678315561228125\) \(\medspace = 3^{14}\cdot 5^{5}\cdot 17^{9}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(58.98\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $3^{7/6}5^{1/2}17^{3/4}\approx 67.44708071823815$ | ||
Ramified primes: | \(3\), \(5\), \(17\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{85}) \) | ||
$\card{ \Aut(K/\Q) }$: | $2$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3}a^{6}$, $\frac{1}{45}a^{7}-\frac{2}{15}a^{6}+\frac{2}{15}a^{5}+\frac{1}{5}a^{4}-\frac{7}{15}a^{3}-\frac{1}{5}a^{2}-\frac{7}{15}a-\frac{1}{5}$, $\frac{1}{135}a^{8}+\frac{1}{9}a^{6}-\frac{1}{3}a^{5}-\frac{4}{45}a^{4}+\frac{1}{3}a^{3}-\frac{2}{9}a^{2}+\frac{1}{3}a-\frac{2}{5}$, $\frac{1}{2025}a^{9}+\frac{2}{675}a^{8}+\frac{2}{675}a^{7}-\frac{19}{225}a^{6}-\frac{157}{675}a^{5}+\frac{12}{25}a^{4}-\frac{172}{675}a^{3}+\frac{11}{25}a^{2}-\frac{2}{15}a-\frac{8}{25}$, $\frac{1}{6075}a^{10}+\frac{1}{405}a^{8}+\frac{7}{675}a^{7}-\frac{26}{405}a^{6}-\frac{298}{675}a^{5}-\frac{136}{2025}a^{4}-\frac{187}{675}a^{3}+\frac{34}{75}a^{2}-\frac{8}{75}a-\frac{4}{25}$, $\frac{1}{117642375}a^{11}+\frac{1052}{13071375}a^{10}-\frac{1817}{7842825}a^{9}-\frac{21143}{13071375}a^{8}-\frac{33772}{39214125}a^{7}+\frac{392762}{13071375}a^{6}-\frac{15316993}{39214125}a^{5}+\frac{3518897}{13071375}a^{4}+\frac{98954}{290475}a^{3}-\frac{182581}{1452375}a^{2}-\frac{222022}{484125}a+\frac{37906}{161375}$
Monogenic: | No | |
Index: | Not computed | |
Inessential primes: | $5$ |
Class group and class number
$C_{12}$, which has order $12$ (assuming GRH)
Unit group
Rank: | $5$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{44152}{117642375}a^{11}-\frac{77833}{39214125}a^{10}+\frac{24376}{7842825}a^{9}+\frac{16364}{13071375}a^{8}-\frac{848404}{39214125}a^{7}-\frac{129292}{4357125}a^{6}+\frac{4650554}{39214125}a^{5}+\frac{1442588}{4357125}a^{4}+\frac{87104}{290475}a^{3}-\frac{363952}{1452375}a^{2}-\frac{111028}{161375}a+\frac{141142}{161375}$, $\frac{1414366}{117642375}a^{11}-\frac{2346304}{39214125}a^{10}+\frac{128387}{1568565}a^{9}+\frac{744932}{13071375}a^{8}-\frac{23032792}{39214125}a^{7}-\frac{679189}{484125}a^{6}+\frac{142969502}{39214125}a^{5}+\frac{18030238}{1452375}a^{4}+\frac{9803884}{871425}a^{3}-\frac{17600416}{1452375}a^{2}-\frac{8662927}{484125}a+\frac{6041636}{161375}$, $\frac{13472}{4705695}a^{11}-\frac{122164}{7842825}a^{10}+\frac{131066}{7842825}a^{9}+\frac{92942}{2614275}a^{8}-\frac{915811}{7842825}a^{7}-\frac{483424}{871425}a^{6}+\frac{14295902}{7842825}a^{5}+\frac{3599666}{871425}a^{4}-\frac{1027696}{871425}a^{3}-\frac{333692}{19365}a^{2}-\frac{521866}{32275}a-\frac{55132}{6455}$, $\frac{491218}{23528475}a^{11}-\frac{66128}{522855}a^{10}+\frac{2276393}{7842825}a^{9}-\frac{771593}{2614275}a^{8}-\frac{3744937}{7842825}a^{7}-\frac{238408}{104571}a^{6}+\frac{69746024}{7842825}a^{5}+\frac{28861136}{2614275}a^{4}+\frac{11800999}{871425}a^{3}-\frac{45597}{1291}a^{2}+\frac{1113908}{96825}a+\frac{977012}{32275}$, $\frac{18463073}{117642375}a^{11}-\frac{15312157}{39214125}a^{10}-\frac{5922313}{7842825}a^{9}+\frac{407911}{161375}a^{8}-\frac{166314251}{39214125}a^{7}-\frac{476061079}{13071375}a^{6}-\frac{200529014}{39214125}a^{5}+\frac{3577872536}{13071375}a^{4}+\frac{183929894}{290475}a^{3}+\frac{484069042}{1452375}a^{2}-\frac{405638396}{484125}a-\frac{182162222}{161375}$ (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 307016.53712191305 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{6}\cdot 307016.53712191305 \cdot 12}{2\cdot\sqrt{1772506678315561228125}}\cr\approx \mathstrut & 2.69214402006952 \end{aligned}\] (assuming GRH)
Galois group
A solvable group of order 24 |
The 9 conjugacy class representatives for $D_{12}$ |
Character table for $D_{12}$ |
Intermediate fields
\(\Q(\sqrt{-51}) \), 3.1.135.1, 4.0.221085.2, 6.0.268618275.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Galois closure: | deg 24 |
Degree 12 sibling: | 12.2.2954177797192602046875.1 |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/padicField/2.12.0.1}{12} }$ | R | R | ${\href{/padicField/7.2.0.1}{2} }^{6}$ | ${\href{/padicField/11.2.0.1}{2} }^{5}{,}\,{\href{/padicField/11.1.0.1}{1} }^{2}$ | ${\href{/padicField/13.2.0.1}{2} }^{5}{,}\,{\href{/padicField/13.1.0.1}{1} }^{2}$ | R | ${\href{/padicField/19.6.0.1}{6} }^{2}$ | ${\href{/padicField/23.3.0.1}{3} }^{4}$ | ${\href{/padicField/29.2.0.1}{2} }^{5}{,}\,{\href{/padicField/29.1.0.1}{1} }^{2}$ | ${\href{/padicField/31.12.0.1}{12} }$ | ${\href{/padicField/37.2.0.1}{2} }^{6}$ | ${\href{/padicField/41.2.0.1}{2} }^{5}{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ | ${\href{/padicField/43.2.0.1}{2} }^{5}{,}\,{\href{/padicField/43.1.0.1}{1} }^{2}$ | ${\href{/padicField/47.4.0.1}{4} }^{3}$ | ${\href{/padicField/53.12.0.1}{12} }$ | ${\href{/padicField/59.2.0.1}{2} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(3\) | 3.6.7.1 | $x^{6} + 6 x^{2} + 6$ | $6$ | $1$ | $7$ | $S_3$ | $[3/2]_{2}$ |
3.6.7.1 | $x^{6} + 6 x^{2} + 6$ | $6$ | $1$ | $7$ | $S_3$ | $[3/2]_{2}$ | |
\(5\) | $\Q_{5}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
$\Q_{5}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
\(17\) | 17.12.9.3 | $x^{12} + 289 x^{4} - 68782$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ |
Artin representations
Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
---|---|---|---|---|---|---|---|
* | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
1.15.2t1.a.a | $1$ | $ 3 \cdot 5 $ | \(\Q(\sqrt{-15}) \) | $C_2$ (as 2T1) | $1$ | $-1$ | |
1.85.2t1.a.a | $1$ | $ 5 \cdot 17 $ | \(\Q(\sqrt{85}) \) | $C_2$ (as 2T1) | $1$ | $1$ | |
* | 1.51.2t1.a.a | $1$ | $ 3 \cdot 17 $ | \(\Q(\sqrt{-51}) \) | $C_2$ (as 2T1) | $1$ | $-1$ |
* | 2.135.3t2.b.a | $2$ | $ 3^{3} \cdot 5 $ | 3.1.135.1 | $S_3$ (as 3T2) | $1$ | $0$ |
* | 2.39015.6t3.d.a | $2$ | $ 3^{3} \cdot 5 \cdot 17^{2}$ | 6.2.447697125.2 | $D_{6}$ (as 6T3) | $1$ | $0$ |
* | 2.4335.4t3.d.a | $2$ | $ 3 \cdot 5 \cdot 17^{2}$ | 4.2.368475.2 | $D_{4}$ (as 4T3) | $1$ | $0$ |
* | 2.39015.12t12.a.b | $2$ | $ 3^{3} \cdot 5 \cdot 17^{2}$ | 12.0.1772506678315561228125.1 | $D_{12}$ (as 12T12) | $1$ | $0$ |
* | 2.39015.12t12.a.a | $2$ | $ 3^{3} \cdot 5 \cdot 17^{2}$ | 12.0.1772506678315561228125.1 | $D_{12}$ (as 12T12) | $1$ | $0$ |