Normalized defining polynomial
\( x^{12} - x^{11} + 4 x^{10} - 20 x^{9} + 25 x^{8} - 43 x^{7} + 122 x^{6} - 101 x^{5} + 168 x^{4} + \cdots + 13 \)
Invariants
Degree: | $12$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 6]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(17547210909508096\) \(\medspace = 2^{9}\cdot 17^{11}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(22.58\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2^{3/2}17^{11/12}\approx 37.971390815226314$ | ||
Ramified primes: | \(2\), \(17\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{34}) \) | ||
$\card{ \Aut(K/\Q) }$: | $2$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{41947802}a^{11}-\frac{2910948}{20973901}a^{10}+\frac{6989947}{20973901}a^{9}-\frac{93}{8447}a^{8}+\frac{2130439}{41947802}a^{7}+\frac{8914508}{20973901}a^{6}+\frac{1202673}{20973901}a^{5}+\frac{14577701}{41947802}a^{4}-\frac{2861777}{41947802}a^{3}+\frac{11365571}{41947802}a^{2}+\frac{7505235}{20973901}a+\frac{1095393}{3226754}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
$C_{2}$, which has order $2$
Unit group
Rank: | $5$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{6597476}{20973901}a^{11}+\frac{375319}{20973901}a^{10}+\frac{19586579}{20973901}a^{9}-\frac{43293}{8447}a^{8}+\frac{28208022}{20973901}a^{7}-\frac{123432822}{20973901}a^{6}+\frac{568749106}{20973901}a^{5}+\frac{125551572}{20973901}a^{4}+\frac{515213863}{20973901}a^{3}+\frac{309407597}{20973901}a^{2}+\frac{152473387}{20973901}a+\frac{8458067}{1613377}$, $\frac{5647515}{41947802}a^{11}-\frac{6229707}{20973901}a^{10}+\frac{12503565}{20973901}a^{9}-\frac{26670}{8447}a^{8}+\frac{259587247}{41947802}a^{7}-\frac{158278443}{20973901}a^{6}+\frac{408107478}{20973901}a^{5}-\frac{1194375691}{41947802}a^{4}+\frac{1062950069}{41947802}a^{3}-\frac{832488513}{41947802}a^{2}+\frac{169214244}{20973901}a-\frac{10155063}{3226754}$, $\frac{2041293}{41947802}a^{11}-\frac{2857355}{20973901}a^{10}+\frac{6005072}{20973901}a^{9}-\frac{10818}{8447}a^{8}+\frac{121584287}{41947802}a^{7}-\frac{85415568}{20973901}a^{6}+\frac{180655347}{20973901}a^{5}-\frac{579522615}{41947802}a^{4}+\frac{596713691}{41947802}a^{3}-\frac{491232679}{41947802}a^{2}+\frac{102552910}{20973901}a-\frac{6295707}{3226754}$, $\frac{300129}{3226754}a^{11}-\frac{133022}{1613377}a^{10}+\frac{396424}{1613377}a^{9}-\frac{15076}{8447}a^{8}+\frac{5861007}{3226754}a^{7}-\frac{2655370}{1613377}a^{6}+\frac{15569131}{1613377}a^{5}-\frac{19779989}{3226754}a^{4}+\frac{8017503}{3226754}a^{3}-\frac{6171917}{3226754}a^{2}-\frac{210513}{1613377}a+\frac{1733521}{3226754}$, $\frac{5355277}{20973901}a^{11}+\frac{5882516}{20973901}a^{10}+\frac{11998445}{20973901}a^{9}-\frac{28176}{8447}a^{8}-\frac{81950367}{20973901}a^{7}-\frac{2413660}{20973901}a^{6}+\frac{319628999}{20973901}a^{5}+\frac{690939978}{20973901}a^{4}+\frac{104809075}{20973901}a^{3}+\frac{715778524}{20973901}a^{2}-\frac{40361143}{20973901}a+\frac{16783513}{1613377}$ | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 2115.49319292 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{6}\cdot 2115.49319292 \cdot 2}{2\cdot\sqrt{17547210909508096}}\cr\approx \mathstrut & 0.982622703543 \end{aligned}\]
Galois group
$S_3^2:C_4$ (as 12T80):
A solvable group of order 144 |
The 18 conjugacy class representatives for $S_3^2:C_4$ |
Character table for $S_3^2:C_4$ |
Intermediate fields
\(\Q(\sqrt{17}) \), 4.0.39304.1, 6.2.11358856.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 12 siblings: | data not computed |
Degree 24 siblings: | data not computed |
Degree 36 siblings: | data not computed |
Minimal sibling: | 12.4.2193401363688512.1 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.4.0.1}{4} }^{2}{,}\,{\href{/padicField/3.2.0.1}{2} }^{2}$ | ${\href{/padicField/5.4.0.1}{4} }^{2}{,}\,{\href{/padicField/5.2.0.1}{2} }^{2}$ | ${\href{/padicField/7.12.0.1}{12} }$ | ${\href{/padicField/11.4.0.1}{4} }^{2}{,}\,{\href{/padicField/11.2.0.1}{2} }^{2}$ | ${\href{/padicField/13.2.0.1}{2} }^{3}{,}\,{\href{/padicField/13.1.0.1}{1} }^{6}$ | R | ${\href{/padicField/19.6.0.1}{6} }{,}\,{\href{/padicField/19.2.0.1}{2} }^{2}{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ | ${\href{/padicField/23.4.0.1}{4} }^{3}$ | ${\href{/padicField/29.4.0.1}{4} }^{2}{,}\,{\href{/padicField/29.2.0.1}{2} }^{2}$ | ${\href{/padicField/31.12.0.1}{12} }$ | ${\href{/padicField/37.4.0.1}{4} }^{2}{,}\,{\href{/padicField/37.2.0.1}{2} }^{2}$ | ${\href{/padicField/41.12.0.1}{12} }$ | ${\href{/padicField/43.2.0.1}{2} }^{5}{,}\,{\href{/padicField/43.1.0.1}{1} }^{2}$ | ${\href{/padicField/47.3.0.1}{3} }^{4}$ | ${\href{/padicField/53.6.0.1}{6} }{,}\,{\href{/padicField/53.2.0.1}{2} }^{2}{,}\,{\href{/padicField/53.1.0.1}{1} }^{2}$ | ${\href{/padicField/59.6.0.1}{6} }{,}\,{\href{/padicField/59.2.0.1}{2} }^{2}{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\) | 2.2.3.2 | $x^{2} + 4 x + 10$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ |
2.4.6.1 | $x^{4} + 2 x^{3} + 31 x^{2} + 30 x + 183$ | $2$ | $2$ | $6$ | $C_2^2$ | $[3]^{2}$ | |
2.6.0.1 | $x^{6} + x^{4} + x^{3} + x + 1$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
\(17\) | 17.12.11.2 | $x^{12} + 34$ | $12$ | $1$ | $11$ | $S_3 \times C_4$ | $[\ ]_{12}^{2}$ |