Normalized defining polynomial
\( x^{12} - 3 x^{11} + 279 x^{10} - 831 x^{9} + 32505 x^{8} - 91308 x^{7} + 2005158 x^{6} - 4813584 x^{5} + 68420724 x^{4} - 119458244 x^{3} + 1226604198 x^{2} - 1176569685 x + 9174406301 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(17523242277045191736328125=3^{16}\cdot 5^{9}\cdot 7^{6}\cdot 11^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $126.95$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(3465=3^{2}\cdot 5\cdot 7\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{3465}(2848,·)$, $\chi_{3465}(1,·)$, $\chi_{3465}(1156,·)$, $\chi_{3465}(1462,·)$, $\chi_{3465}(2311,·)$, $\chi_{3465}(307,·)$, $\chi_{3465}(694,·)$, $\chi_{3465}(1849,·)$, $\chi_{3465}(2617,·)$, $\chi_{3465}(538,·)$, $\chi_{3465}(3004,·)$, $\chi_{3465}(1693,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{419} a^{9} - \frac{60}{419} a^{8} + \frac{105}{419} a^{7} + \frac{63}{419} a^{6} - \frac{193}{419} a^{5} + \frac{59}{419} a^{4} + \frac{58}{419} a^{3} + \frac{154}{419} a^{2} - \frac{44}{419} a + \frac{54}{419}$, $\frac{1}{419} a^{10} - \frac{143}{419} a^{8} + \frac{78}{419} a^{7} - \frac{184}{419} a^{6} - \frac{208}{419} a^{5} - \frac{173}{419} a^{4} - \frac{137}{419} a^{3} - \frac{22}{419} a^{2} - \frac{72}{419} a - \frac{112}{419}$, $\frac{1}{11448038200989648908463798165533587849} a^{11} + \frac{346791403535133898649528168796193}{11448038200989648908463798165533587849} a^{10} - \frac{5052015180423586879783762113868216}{11448038200989648908463798165533587849} a^{9} + \frac{1031724301225725317116351670968086031}{11448038200989648908463798165533587849} a^{8} - \frac{1040118372758143104500885953106552654}{11448038200989648908463798165533587849} a^{7} - \frac{1234625590892691249935892891602468580}{11448038200989648908463798165533587849} a^{6} + \frac{1002617680865813447282794304251611248}{11448038200989648908463798165533587849} a^{5} + \frac{3933437913563356449948326181877598082}{11448038200989648908463798165533587849} a^{4} + \frac{4751507711870855993235726339586363025}{11448038200989648908463798165533587849} a^{3} - \frac{4818900035928199096967354309065585399}{11448038200989648908463798165533587849} a^{2} - \frac{4087026224112998914948636453835438264}{11448038200989648908463798165533587849} a + \frac{3789798229428210824088799685371928819}{11448038200989648908463798165533587849}$
Class group and class number
$C_{2}\times C_{2}\times C_{28564}$, which has order $114256$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 201.000834787 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 12 |
| The 12 conjugacy class representatives for $C_{12}$ |
| Character table for $C_{12}$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{9})^+\), 4.0.741125.2, 6.6.820125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.12.0.1}{12} }$ | R | R | R | R | ${\href{/LocalNumberField/13.12.0.1}{12} }$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/23.12.0.1}{12} }$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }$ | ${\href{/LocalNumberField/47.12.0.1}{12} }$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.12.16.14 | $x^{12} + 72 x^{11} - 36 x^{10} + 108 x^{9} - 108 x^{8} + 54 x^{7} + 72 x^{6} - 81 x^{5} - 81 x^{4} - 81 x^{3} + 81 x^{2} - 81$ | $3$ | $4$ | $16$ | $C_{12}$ | $[2]^{4}$ |
| $5$ | 5.12.9.1 | $x^{12} - 10 x^{8} - 375 x^{4} - 2000$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ |
| $7$ | 7.12.6.2 | $x^{12} + 7203 x^{4} - 16807 x^{2} + 588245$ | $2$ | $6$ | $6$ | $C_{12}$ | $[\ ]_{2}^{6}$ |
| $11$ | 11.6.3.2 | $x^{6} - 121 x^{2} + 3993$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 11.6.3.2 | $x^{6} - 121 x^{2} + 3993$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |