Normalized defining polynomial
\( x^{12} - 6 x^{11} + 79 x^{10} - 262 x^{9} + 2036 x^{8} - 2582 x^{7} + 18759 x^{6} + 7090 x^{5} + 60484 x^{4} - 119238 x^{3} + 740767 x^{2} - 672574 x + 1284583 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(17374411772723200000000=2^{22}\cdot 5^{8}\cdot 13^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $71.34$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{43899434} a^{10} + \frac{3669610}{21949717} a^{9} + \frac{441642}{21949717} a^{8} + \frac{1629595}{43899434} a^{7} - \frac{3730279}{21949717} a^{6} - \frac{3369736}{21949717} a^{5} + \frac{7660305}{43899434} a^{4} + \frac{7779079}{21949717} a^{3} - \frac{8886171}{21949717} a^{2} - \frac{20968683}{43899434} a - \frac{629762}{21949717}$, $\frac{1}{594018915348568913749474} a^{11} + \frac{2720514033474857}{297009457674284456874737} a^{10} + \frac{41860378428143139875187}{594018915348568913749474} a^{9} - \frac{57207645376304696749802}{297009457674284456874737} a^{8} + \frac{40544321302396544924639}{297009457674284456874737} a^{7} - \frac{11253548992672152436080}{297009457674284456874737} a^{6} - \frac{35347578032984301494684}{297009457674284456874737} a^{5} + \frac{75145273255417001261663}{594018915348568913749474} a^{4} - \frac{4995692132401816169742}{297009457674284456874737} a^{3} - \frac{14922889795232199575507}{594018915348568913749474} a^{2} + \frac{11346259023691007424263}{594018915348568913749474} a - \frac{125605221264804322326743}{594018915348568913749474}$
Class group and class number
$C_{2}\times C_{16}\times C_{16}$, which has order $512$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1640.26926328 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 12 |
| The 6 conjugacy class representatives for $C_3 : C_4$ |
| Character table for $C_3 : C_4$ |
Intermediate fields
| \(\Q(\sqrt{13}) \), 3.3.1300.1 x3, 4.0.140608.2, 6.6.21970000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{3}$ | R | ${\href{/LocalNumberField/17.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.12.22.63 | $x^{12} - 60 x^{6} + 52$ | $6$ | $2$ | $22$ | $C_3 : C_4$ | $[3]_{3}^{2}$ |
| $5$ | 5.12.8.1 | $x^{12} - 30 x^{9} + 175 x^{6} + 500 x^{3} + 5000$ | $3$ | $4$ | $8$ | $C_3 : C_4$ | $[\ ]_{3}^{4}$ |
| $13$ | 13.4.3.1 | $x^{4} - 13$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 13.4.3.1 | $x^{4} - 13$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 13.4.3.1 | $x^{4} - 13$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |