Normalized defining polynomial
\( x^{12} + 762 x^{10} + 202311 x^{8} + 24967184 x^{6} + 1472174475 x^{4} + 33659206875 x^{2} + 252015625 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1732127044066296934075975910854656=2^{12}\cdot 3^{18}\cdot 127^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $588.68$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 127$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4572=2^{2}\cdot 3^{2}\cdot 127\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4572}(1,·)$, $\chi_{4572}(4571,·)$, $\chi_{4572}(1505,·)$, $\chi_{4572}(4171,·)$, $\chi_{4572}(781,·)$, $\chi_{4572}(2287,·)$, $\chi_{4572}(401,·)$, $\chi_{4572}(2285,·)$, $\chi_{4572}(3067,·)$, $\chi_{4572}(1885,·)$, $\chi_{4572}(3791,·)$, $\chi_{4572}(2687,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{127} a^{6}$, $\frac{1}{635} a^{7} + \frac{1}{5} a^{5} - \frac{2}{5} a^{3} + \frac{2}{5} a$, $\frac{1}{3175} a^{8} + \frac{12}{3175} a^{6} - \frac{7}{25} a^{4} - \frac{8}{25} a^{2}$, $\frac{1}{15875} a^{9} + \frac{12}{15875} a^{7} - \frac{32}{125} a^{5} - \frac{33}{125} a^{3} + \frac{2}{5} a$, $\frac{1}{1258230195625} a^{10} + \frac{154361362}{1258230195625} a^{8} - \frac{813022989}{1258230195625} a^{6} - \frac{4237480108}{9907324375} a^{4} + \frac{8049282}{79258595} a^{2} + \frac{5255285}{15851719}$, $\frac{1}{798976174221875} a^{11} - \frac{142323744}{6291150978125} a^{9} - \frac{4147195282}{6291150978125} a^{7} + \frac{2144463030342}{6291150978125} a^{5} + \frac{963652076}{1981464875} a^{3} - \frac{5825004}{79258595} a$
Class group and class number
$C_{2}\times C_{8}\times C_{8}\times C_{8}\times C_{15960}$, which has order $16343040$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{243}{4461684625} a^{11} - \frac{1262}{35131375} a^{9} - \frac{257697}{35131375} a^{7} - \frac{851607}{1405255} a^{5} - \frac{4872018}{276625} a^{3} + \frac{126396}{11065} a \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 120153.21081985293 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_6$ (as 12T2):
| An abelian group of order 12 |
| The 12 conjugacy class representatives for $C_6\times C_2$ |
| Character table for $C_6\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-381}) \), \(\Q(\sqrt{381}) \), 3.3.1306449.2, \(\Q(i, \sqrt{381})\), 6.0.109235775334464.1, 6.0.41618830402430784.1, 6.6.650294225037981.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/13.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/29.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.12.12.26 | $x^{12} - 162 x^{10} + 26423 x^{8} + 125508 x^{6} - 64481 x^{4} - 122498 x^{2} - 86071$ | $2$ | $6$ | $12$ | $C_6\times C_2$ | $[2]^{6}$ |
| $3$ | 3.12.18.51 | $x^{12} + 27 x^{11} + 15 x^{10} + 36 x^{9} - 36 x^{8} - 18 x^{7} + 21 x^{6} - 18 x^{4} + 27 x^{2} - 27 x + 36$ | $6$ | $2$ | $18$ | $C_6\times C_2$ | $[2]_{2}^{2}$ |
| $127$ | 127.12.10.1 | $x^{12} - 1270 x^{6} + 11758041$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ |