Normalized defining polynomial
\( x^{12} - 5 x^{11} + 54 x^{10} - 122 x^{9} + 433 x^{8} - 1078 x^{7} + 4875 x^{6} - 10397 x^{5} + 23869 x^{4} + 14489 x^{3} + 73305 x^{2} - 134592 x + 105011 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1731886157602686265669=229^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $58.87$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $229$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{106} a^{8} + \frac{23}{106} a^{7} + \frac{11}{53} a^{6} - \frac{1}{106} a^{5} + \frac{37}{106} a^{4} + \frac{31}{106} a^{3} - \frac{16}{53} a^{2} - \frac{1}{2} a + \frac{25}{106}$, $\frac{1}{106} a^{9} + \frac{23}{106} a^{7} + \frac{23}{106} a^{6} - \frac{23}{53} a^{5} + \frac{14}{53} a^{4} - \frac{3}{106} a^{3} + \frac{47}{106} a^{2} - \frac{14}{53} a - \frac{45}{106}$, $\frac{1}{318} a^{10} - \frac{1}{318} a^{8} + \frac{107}{318} a^{7} - \frac{25}{53} a^{6} - \frac{9}{53} a^{5} + \frac{21}{106} a^{4} + \frac{151}{318} a^{3} - \frac{18}{53} a^{2} + \frac{61}{318} a - \frac{35}{159}$, $\frac{1}{108075189242400010505802} a^{11} + \frac{80237512290039351097}{54037594621200005252901} a^{10} - \frac{268014039856919968531}{108075189242400010505802} a^{9} - \frac{49200195742613718893}{18012531540400001750967} a^{8} - \frac{250435978358968462151}{108075189242400010505802} a^{7} + \frac{2763592669429093857983}{18012531540400001750967} a^{6} + \frac{2903089230973532315869}{6004177180133333916989} a^{5} + \frac{26443537461058505036723}{54037594621200005252901} a^{4} + \frac{45923441926826818809155}{108075189242400010505802} a^{3} + \frac{8268971934520702097215}{108075189242400010505802} a^{2} - \frac{976472510746221800441}{108075189242400010505802} a - \frac{34631042633264622616319}{108075189242400010505802}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{34}$, which has order $272$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1444.72403292 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 12 |
| The 6 conjugacy class representatives for $C_3 : C_4$ |
| Character table for $C_3 : C_4$ |
Intermediate fields
| \(\Q(\sqrt{229}) \), 3.3.229.1 x3, 4.0.12008989.1, 6.6.12008989.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/3.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/37.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/53.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 229 | Data not computed | ||||||