Normalized defining polynomial
\( x^{12} - 56 x^{9} + 126 x^{8} + 840 x^{7} + 3836 x^{6} - 3528 x^{5} - 1911 x^{4} + 26264 x^{3} + 209916 x^{2} - 23520 x + 50176 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1709948423405886890625=3^{18}\cdot 5^{6}\cdot 7^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $58.81$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(315=3^{2}\cdot 5\cdot 7\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{315}(1,·)$, $\chi_{315}(194,·)$, $\chi_{315}(164,·)$, $\chi_{315}(166,·)$, $\chi_{315}(134,·)$, $\chi_{315}(74,·)$, $\chi_{315}(241,·)$, $\chi_{315}(149,·)$, $\chi_{315}(151,·)$, $\chi_{315}(121,·)$, $\chi_{315}(314,·)$, $\chi_{315}(181,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{8} a^{4} - \frac{1}{4} a^{3} - \frac{1}{8} a^{2} + \frac{1}{4} a$, $\frac{1}{8} a^{5} - \frac{1}{8} a^{3}$, $\frac{1}{112} a^{6} - \frac{1}{16} a^{5} - \frac{1}{16} a^{4} + \frac{1}{16} a^{3} + \frac{1}{8} a^{2} - \frac{1}{2} a$, $\frac{1}{224} a^{7} - \frac{1}{16} a^{5} + \frac{7}{32} a^{3} + \frac{1}{8} a$, $\frac{1}{896} a^{8} + \frac{1}{448} a^{6} + \frac{7}{128} a^{4} - \frac{1}{4} a^{3} + \frac{5}{32} a^{2} - \frac{1}{4} a$, $\frac{1}{3584} a^{9} + \frac{1}{3584} a^{8} - \frac{3}{1792} a^{7} + \frac{1}{1792} a^{6} + \frac{7}{512} a^{5} - \frac{9}{512} a^{4} + \frac{11}{128} a^{3} - \frac{7}{128} a^{2} - \frac{5}{16} a$, $\frac{1}{14336} a^{10} + \frac{1}{14336} a^{8} + \frac{1}{1792} a^{7} - \frac{1}{14336} a^{6} + \frac{7}{128} a^{5} + \frac{109}{2048} a^{4} - \frac{9}{256} a^{3} + \frac{119}{512} a^{2} - \frac{15}{64} a - \frac{1}{2}$, $\frac{1}{244837892096} a^{11} + \frac{5266767}{244837892096} a^{10} + \frac{1869911}{34976841728} a^{9} + \frac{26929655}{244837892096} a^{8} + \frac{168670455}{244837892096} a^{7} + \frac{968187137}{244837892096} a^{6} + \frac{1166041373}{34976841728} a^{5} + \frac{1972444091}{34976841728} a^{4} + \frac{375811353}{8744210432} a^{3} + \frac{2100183969}{8744210432} a^{2} - \frac{336640025}{1093026304} a - \frac{1521033}{34157072}$
Class group and class number
$C_{1554}$, which has order $1554$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 527982.4344714497 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_6$ (as 12T2):
| An abelian group of order 12 |
| The 12 conjugacy class representatives for $C_6\times C_2$ |
| Character table for $C_6\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{-7}) \), \(\Q(\sqrt{105}) \), \(\Q(\sqrt{-15}) \), 3.3.3969.1, \(\Q(\sqrt{-7}, \sqrt{-15})\), 6.0.110270727.2, 6.6.41351522625.1, 6.0.5907360375.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.1.0.1}{1} }^{12}$ | R | R | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.12.18.51 | $x^{12} + 27 x^{11} + 15 x^{10} + 36 x^{9} - 36 x^{8} - 18 x^{7} + 21 x^{6} - 18 x^{4} + 27 x^{2} - 27 x + 36$ | $6$ | $2$ | $18$ | $C_6\times C_2$ | $[2]_{2}^{2}$ |
| $5$ | 5.12.6.1 | $x^{12} + 500 x^{6} - 3125 x^{2} + 62500$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |
| $7$ | 7.12.10.2 | $x^{12} + 35 x^{6} + 441$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ |