Properties

Label 12.0.16694404664...4416.1
Degree $12$
Signature $[0, 6]$
Discriminant $2^{12}\cdot 3^{16}\cdot 79^{10}$
Root discriminant $330.03$
Ramified primes $2, 3, 79$
Class number $27095040$ (GRH)
Class group $[2, 2, 4, 4, 168, 2520]$ (GRH)
Galois group $C_6\times C_2$ (as 12T2)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![225275535424, 0, 657177300, 0, -11027847, 0, -924300, 0, 1422, 0, 0, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^12 + 1422*x^8 - 924300*x^6 - 11027847*x^4 + 657177300*x^2 + 225275535424)
 
gp: K = bnfinit(x^12 + 1422*x^8 - 924300*x^6 - 11027847*x^4 + 657177300*x^2 + 225275535424, 1)
 

Normalized defining polynomial

\( x^{12} + 1422 x^{8} - 924300 x^{6} - 11027847 x^{4} + 657177300 x^{2} + 225275535424 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $12$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(1669440466451705194787135164416=2^{12}\cdot 3^{16}\cdot 79^{10}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $330.03$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 79$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(2844=2^{2}\cdot 3^{2}\cdot 79\)
Dirichlet character group:    $\lbrace$$\chi_{2844}(1,·)$, $\chi_{2844}(1003,·)$, $\chi_{2844}(2053,·)$, $\chi_{2844}(103,·)$, $\chi_{2844}(925,·)$, $\chi_{2844}(2347,·)$, $\chi_{2844}(655,·)$, $\chi_{2844}(1525,·)$, $\chi_{2844}(631,·)$, $\chi_{2844}(2425,·)$, $\chi_{2844}(1423,·)$, $\chi_{2844}(2077,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $\frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{20} a^{4} + \frac{1}{4} a^{2} + \frac{1}{5}$, $\frac{1}{40} a^{5} + \frac{1}{8} a^{3} + \frac{1}{10} a$, $\frac{1}{3160} a^{6} - \frac{1}{40} a^{4} + \frac{2}{5} a^{2} + \frac{2}{5}$, $\frac{1}{6320} a^{7} - \frac{19}{80} a^{3} - \frac{1}{4} a$, $\frac{1}{1264000} a^{8} - \frac{13}{126400} a^{6} - \frac{353}{16000} a^{4} - \frac{129}{800} a^{2} - \frac{69}{250}$, $\frac{1}{949264000} a^{9} + \frac{6707}{94926400} a^{7} + \frac{103647}{12016000} a^{5} - \frac{38369}{600800} a^{3} + \frac{43903}{93875} a$, $\frac{1}{4313455616000} a^{10} + \frac{1063647}{4313455616000} a^{8} - \frac{636853297}{4313455616000} a^{6} - \frac{1027858261}{54600704000} a^{4} - \frac{6264574869}{13650176000} a^{2} + \frac{376737}{1136000}$, $\frac{1}{340762993664000} a^{11} + \frac{177}{4313455616000} a^{9} + \frac{102951937}{4313455616000} a^{7} + \frac{37599517931}{4313455616000} a^{5} - \frac{2463345691}{13650176000} a^{3} + \frac{298043457}{853136000} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{2}\times C_{4}\times C_{4}\times C_{168}\times C_{2520}$, which has order $27095040$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $5$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -\frac{9}{149983712000} a^{11} - \frac{1}{1898528000} a^{9} - \frac{393}{1898528000} a^{7} + \frac{50517}{1898528000} a^{5} + \frac{4879}{6008000} a^{3} + \frac{207}{187750} a \) (order $4$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 447819.48619075713 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2\times C_6$ (as 12T2):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 12
The 12 conjugacy class representatives for $C_6\times C_2$
Character table for $C_6\times C_2$

Intermediate fields

\(\Q(\sqrt{-1}) \), \(\Q(\sqrt{79}) \), \(\Q(\sqrt{-79}) \), 3.3.505521.1, \(\Q(i, \sqrt{79})\), 6.0.16355294812224.1, 6.6.1292068290165696.1, 6.0.20188567033839.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R ${\href{/LocalNumberField/5.1.0.1}{1} }^{12}$ ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/13.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/17.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/23.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.2.2.1$x^{2} + 2 x + 2$$2$$1$$2$$C_2$$[2]$
2.2.2.1$x^{2} + 2 x + 2$$2$$1$$2$$C_2$$[2]$
2.2.2.1$x^{2} + 2 x + 2$$2$$1$$2$$C_2$$[2]$
2.2.2.1$x^{2} + 2 x + 2$$2$$1$$2$$C_2$$[2]$
2.2.2.1$x^{2} + 2 x + 2$$2$$1$$2$$C_2$$[2]$
2.2.2.1$x^{2} + 2 x + 2$$2$$1$$2$$C_2$$[2]$
$3$3.6.8.4$x^{6} + 18 x^{2} + 63$$3$$2$$8$$C_6$$[2]^{2}$
3.6.8.4$x^{6} + 18 x^{2} + 63$$3$$2$$8$$C_6$$[2]^{2}$
$79$79.12.10.3$x^{12} - 553 x^{6} + 505521$$6$$2$$10$$C_6\times C_2$$[\ ]_{6}^{2}$