Normalized defining polynomial
\( x^{12} - x^{11} + 11 x^{10} - 13 x^{9} + 115 x^{8} - 46 x^{7} + 1092 x^{6} - 632 x^{5} + 11184 x^{4} - 8768 x^{3} + 6912 x^{2} - 5120 x + 4096 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1665802807501953125=5^{9}\cdot 31^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $33.00$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(155=5\cdot 31\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{155}(32,·)$, $\chi_{155}(1,·)$, $\chi_{155}(98,·)$, $\chi_{155}(67,·)$, $\chi_{155}(36,·)$, $\chi_{155}(129,·)$, $\chi_{155}(149,·)$, $\chi_{155}(118,·)$, $\chi_{155}(87,·)$, $\chi_{155}(56,·)$, $\chi_{155}(94,·)$, $\chi_{155}(63,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{4} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{8} a^{7} - \frac{1}{8} a^{6} - \frac{1}{8} a^{5} - \frac{1}{8} a^{4} - \frac{1}{8} a^{3} - \frac{1}{4} a^{2}$, $\frac{1}{16} a^{8} - \frac{1}{16} a^{7} - \frac{1}{16} a^{6} - \frac{1}{16} a^{5} - \frac{1}{16} a^{4} - \frac{1}{8} a^{3}$, $\frac{1}{4688704} a^{9} - \frac{123989}{4688704} a^{8} + \frac{37359}{4688704} a^{7} - \frac{105065}{4688704} a^{6} - \frac{513257}{4688704} a^{5} - \frac{975365}{2344352} a^{4} - \frac{275969}{1172176} a^{3} + \frac{101993}{586088} a^{2} - \frac{31281}{293044} a - \frac{2673}{73261}$, $\frac{1}{18754816} a^{10} - \frac{1}{18754816} a^{9} - \frac{22533}{18754816} a^{8} - \frac{476925}{18754816} a^{7} + \frac{251587}{18754816} a^{6} - \frac{1112303}{9377408} a^{5} + \frac{231269}{4688704} a^{4} + \frac{28093}{2344352} a^{3} + \frac{58895}{1172176} a^{2} + \frac{136027}{293044} a + \frac{3210}{73261}$, $\frac{1}{75019264} a^{11} - \frac{1}{75019264} a^{10} - \frac{5}{75019264} a^{9} + \frac{766467}{75019264} a^{8} - \frac{2091581}{75019264} a^{7} + \frac{1677649}{37509632} a^{6} - \frac{4534843}{18754816} a^{5} - \frac{1583027}{9377408} a^{4} - \frac{1651401}{4688704} a^{3} + \frac{311717}{1172176} a^{2} + \frac{15671}{73261} a - \frac{27273}{73261}$
Class group and class number
$C_{3}\times C_{3}$, which has order $9$
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{115}{9377408} a^{11} - \frac{353}{153728} a^{6} + \frac{372247}{293044} a \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4882.16021651 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 12 |
| The 12 conjugacy class representatives for $C_{12}$ |
| Character table for $C_{12}$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 3.3.961.1, \(\Q(\zeta_{5})\), 6.6.115440125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/3.12.0.1}{12} }$ | R | ${\href{/LocalNumberField/7.12.0.1}{12} }$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/13.12.0.1}{12} }$ | ${\href{/LocalNumberField/17.12.0.1}{12} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{6}$ | R | ${\href{/LocalNumberField/37.12.0.1}{12} }$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.12.9.2 | $x^{12} - 10 x^{8} + 25 x^{4} - 500$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ |
| $31$ | 31.3.2.1 | $x^{3} - 31$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 31.3.2.1 | $x^{3} - 31$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 31.3.2.1 | $x^{3} - 31$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 31.3.2.1 | $x^{3} - 31$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |