Properties

Label 12.0.16656543708...3125.1
Degree $12$
Signature $[0, 6]$
Discriminant $5^{6}\cdot 13^{11}\cdot 29^{6}$
Root discriminant $126.42$
Ramified primes $5, 13, 29$
Class number $191808$ (GRH)
Class group $[2, 2, 2, 18, 1332]$ (GRH)
Galois group $C_{12}$ (as 12T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![34113645541, -5815475173, 5815475173, -313053157, 313053157, -7363045, 7363045, -84709, 84709, -469, 469, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^12 - x^11 + 469*x^10 - 469*x^9 + 84709*x^8 - 84709*x^7 + 7363045*x^6 - 7363045*x^5 + 313053157*x^4 - 313053157*x^3 + 5815475173*x^2 - 5815475173*x + 34113645541)
 
gp: K = bnfinit(x^12 - x^11 + 469*x^10 - 469*x^9 + 84709*x^8 - 84709*x^7 + 7363045*x^6 - 7363045*x^5 + 313053157*x^4 - 313053157*x^3 + 5815475173*x^2 - 5815475173*x + 34113645541, 1)
 

Normalized defining polynomial

\( x^{12} - x^{11} + 469 x^{10} - 469 x^{9} + 84709 x^{8} - 84709 x^{7} + 7363045 x^{6} - 7363045 x^{5} + 313053157 x^{4} - 313053157 x^{3} + 5815475173 x^{2} - 5815475173 x + 34113645541 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $12$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(16656543708527452138703125=5^{6}\cdot 13^{11}\cdot 29^{6}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $126.42$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $5, 13, 29$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(1885=5\cdot 13\cdot 29\)
Dirichlet character group:    $\lbrace$$\chi_{1885}(1,·)$, $\chi_{1885}(579,·)$, $\chi_{1885}(581,·)$, $\chi_{1885}(146,·)$, $\chi_{1885}(1159,·)$, $\chi_{1885}(1161,·)$, $\chi_{1885}(1741,·)$, $\chi_{1885}(434,·)$, $\chi_{1885}(1449,·)$, $\chi_{1885}(1594,·)$, $\chi_{1885}(1596,·)$, $\chi_{1885}(869,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{3568122973} a^{7} - \frac{1373988354}{3568122973} a^{6} + \frac{252}{3568122973} a^{5} - \frac{627277705}{3568122973} a^{4} + \frac{18144}{3568122973} a^{3} - \frac{1759889313}{3568122973} a^{2} + \frac{326592}{3568122973} a + \frac{193377388}{3568122973}$, $\frac{1}{3568122973} a^{8} + \frac{288}{3568122973} a^{6} - \frac{490140878}{3568122973} a^{5} + \frac{25920}{3568122973} a^{4} + \frac{977716285}{3568122973} a^{3} + \frac{746496}{3568122973} a^{2} - \frac{483443470}{3568122973} a + \frac{3359232}{3568122973}$, $\frac{1}{3568122973} a^{9} - \frac{843144929}{3568122973} a^{6} - \frac{46656}{3568122973} a^{5} - \frac{340576298}{3568122973} a^{4} - \frac{4478976}{3568122973} a^{3} - \frac{308783492}{3568122973} a^{2} - \frac{90699264}{3568122973} a + \frac{1397279824}{3568122973}$, $\frac{1}{3568122973} a^{10} - \frac{58320}{3568122973} a^{6} + \frac{1612690403}{3568122973} a^{5} - \frac{6998400}{3568122973} a^{4} + \frac{1169623033}{3568122973} a^{3} - \frac{226748160}{3568122973} a^{2} - \frac{536386510}{3568122973} a - \frac{1088391168}{3568122973}$, $\frac{1}{3568122973} a^{11} - \frac{50510216}{3568122973} a^{6} + \frac{7698240}{3568122973} a^{5} - \frac{1269413371}{3568122973} a^{4} + \frac{831409920}{3568122973} a^{3} - \frac{223802325}{3568122973} a^{2} + \frac{117839407}{3568122973} a - \frac{1067449493}{3568122973}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{2}\times C_{2}\times C_{18}\times C_{1332}$, which has order $191808$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $5$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 120.784031363 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{12}$ (as 12T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 12
The 12 conjugacy class representatives for $C_{12}$
Character table for $C_{12}$

Intermediate fields

\(\Q(\sqrt{13}) \), 3.3.169.1, 4.0.46191925.1, \(\Q(\zeta_{13})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.12.0.1}{12} }$ ${\href{/LocalNumberField/3.3.0.1}{3} }^{4}$ R ${\href{/LocalNumberField/7.12.0.1}{12} }$ ${\href{/LocalNumberField/11.12.0.1}{12} }$ R ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/19.12.0.1}{12} }$ ${\href{/LocalNumberField/23.3.0.1}{3} }^{4}$ R ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}$ ${\href{/LocalNumberField/37.12.0.1}{12} }$ ${\href{/LocalNumberField/41.12.0.1}{12} }$ ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/59.12.0.1}{12} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$5$5.4.2.2$x^{4} - 5 x^{2} + 50$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
5.4.2.2$x^{4} - 5 x^{2} + 50$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
5.4.2.2$x^{4} - 5 x^{2} + 50$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
$13$13.12.11.1$x^{12} - 13$$12$$1$$11$$C_{12}$$[\ ]_{12}$
$29$29.6.3.1$x^{6} - 58 x^{4} + 841 x^{2} - 219501$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
29.6.3.1$x^{6} - 58 x^{4} + 841 x^{2} - 219501$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$