Normalized defining polynomial
\( x^{12} - x^{11} + 469 x^{10} - 469 x^{9} + 84709 x^{8} - 84709 x^{7} + 7363045 x^{6} - 7363045 x^{5} + 313053157 x^{4} - 313053157 x^{3} + 5815475173 x^{2} - 5815475173 x + 34113645541 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(16656543708527452138703125=5^{6}\cdot 13^{11}\cdot 29^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $126.42$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 13, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1885=5\cdot 13\cdot 29\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1885}(1,·)$, $\chi_{1885}(579,·)$, $\chi_{1885}(581,·)$, $\chi_{1885}(146,·)$, $\chi_{1885}(1159,·)$, $\chi_{1885}(1161,·)$, $\chi_{1885}(1741,·)$, $\chi_{1885}(434,·)$, $\chi_{1885}(1449,·)$, $\chi_{1885}(1594,·)$, $\chi_{1885}(1596,·)$, $\chi_{1885}(869,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{3568122973} a^{7} - \frac{1373988354}{3568122973} a^{6} + \frac{252}{3568122973} a^{5} - \frac{627277705}{3568122973} a^{4} + \frac{18144}{3568122973} a^{3} - \frac{1759889313}{3568122973} a^{2} + \frac{326592}{3568122973} a + \frac{193377388}{3568122973}$, $\frac{1}{3568122973} a^{8} + \frac{288}{3568122973} a^{6} - \frac{490140878}{3568122973} a^{5} + \frac{25920}{3568122973} a^{4} + \frac{977716285}{3568122973} a^{3} + \frac{746496}{3568122973} a^{2} - \frac{483443470}{3568122973} a + \frac{3359232}{3568122973}$, $\frac{1}{3568122973} a^{9} - \frac{843144929}{3568122973} a^{6} - \frac{46656}{3568122973} a^{5} - \frac{340576298}{3568122973} a^{4} - \frac{4478976}{3568122973} a^{3} - \frac{308783492}{3568122973} a^{2} - \frac{90699264}{3568122973} a + \frac{1397279824}{3568122973}$, $\frac{1}{3568122973} a^{10} - \frac{58320}{3568122973} a^{6} + \frac{1612690403}{3568122973} a^{5} - \frac{6998400}{3568122973} a^{4} + \frac{1169623033}{3568122973} a^{3} - \frac{226748160}{3568122973} a^{2} - \frac{536386510}{3568122973} a - \frac{1088391168}{3568122973}$, $\frac{1}{3568122973} a^{11} - \frac{50510216}{3568122973} a^{6} + \frac{7698240}{3568122973} a^{5} - \frac{1269413371}{3568122973} a^{4} + \frac{831409920}{3568122973} a^{3} - \frac{223802325}{3568122973} a^{2} + \frac{117839407}{3568122973} a - \frac{1067449493}{3568122973}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{18}\times C_{1332}$, which has order $191808$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 120.784031363 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 12 |
| The 12 conjugacy class representatives for $C_{12}$ |
| Character table for $C_{12}$ |
Intermediate fields
| \(\Q(\sqrt{13}) \), 3.3.169.1, 4.0.46191925.1, \(\Q(\zeta_{13})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.12.0.1}{12} }$ | ${\href{/LocalNumberField/3.3.0.1}{3} }^{4}$ | R | ${\href{/LocalNumberField/7.12.0.1}{12} }$ | ${\href{/LocalNumberField/11.12.0.1}{12} }$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{4}$ | R | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }$ | ${\href{/LocalNumberField/41.12.0.1}{12} }$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.4.2.2 | $x^{4} - 5 x^{2} + 50$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 5.4.2.2 | $x^{4} - 5 x^{2} + 50$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.2 | $x^{4} - 5 x^{2} + 50$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| $13$ | 13.12.11.1 | $x^{12} - 13$ | $12$ | $1$ | $11$ | $C_{12}$ | $[\ ]_{12}$ |
| $29$ | 29.6.3.1 | $x^{6} - 58 x^{4} + 841 x^{2} - 219501$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 29.6.3.1 | $x^{6} - 58 x^{4} + 841 x^{2} - 219501$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |