Normalized defining polynomial
\( x^{12} - 4 x^{11} + 8 x^{10} - 20 x^{9} + 25 x^{8} - 8 x^{7} + 32 x^{6} + 16 x^{5} - 140 x^{4} + 32 x^{2} + 112 x + 196 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(16384000000000000=2^{26}\cdot 5^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $22.45$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{5} a^{7} - \frac{2}{5} a^{6} - \frac{2}{5} a^{4} + \frac{1}{5} a^{2} + \frac{1}{5} a + \frac{1}{5}$, $\frac{1}{20} a^{8} + \frac{3}{10} a^{6} + \frac{2}{5} a^{5} - \frac{9}{20} a^{4} - \frac{1}{5} a^{3} - \frac{1}{10} a^{2} + \frac{2}{5} a + \frac{1}{10}$, $\frac{1}{20} a^{9} - \frac{1}{10} a^{7} + \frac{1}{5} a^{6} - \frac{9}{20} a^{5} - \frac{2}{5} a^{4} - \frac{1}{10} a^{3} - \frac{3}{10} a - \frac{2}{5}$, $\frac{1}{40} a^{10} - \frac{1}{10} a^{7} - \frac{1}{40} a^{6} - \frac{3}{10} a^{5} - \frac{1}{10} a^{4} - \frac{1}{5} a^{3} - \frac{9}{20} a^{2} - \frac{1}{10}$, $\frac{1}{4461800} a^{11} - \frac{11537}{1115450} a^{10} + \frac{5927}{446180} a^{9} - \frac{9459}{446180} a^{8} - \frac{88209}{892360} a^{7} + \frac{216123}{1115450} a^{6} - \frac{532593}{2230900} a^{5} - \frac{80763}{446180} a^{4} + \frac{30027}{63740} a^{3} - \frac{8819}{31870} a^{2} - \frac{71641}{557725} a - \frac{64047}{159350}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{6603}{1115450} a^{11} + \frac{60153}{2230900} a^{10} - \frac{1199}{22309} a^{9} + \frac{14886}{111545} a^{8} - \frac{43963}{223090} a^{7} + \frac{260943}{2230900} a^{6} - \frac{190726}{557725} a^{5} + \frac{26062}{111545} a^{4} + \frac{7737}{15935} a^{3} - \frac{841}{31870} a^{2} - \frac{290378}{557725} a - \frac{56988}{79675} \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 29499.8421143 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 120 |
| The 7 conjugacy class representatives for $S_5$ |
| Character table for $S_5$ |
Intermediate fields
| \(\Q(\sqrt{-1}) \), 6.0.64000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 5 sibling: | data not computed |
| Degree 6 sibling: | data not computed |
| Degree 10 siblings: | data not computed |
| Degree 15 sibling: | data not computed |
| Degree 20 siblings: | data not computed |
| Degree 24 sibling: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 40 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.9.2 | $x^{4} - 2 x^{2} + 2$ | $4$ | $1$ | $9$ | $D_{4}$ | $[2, 3, 7/2]$ |
| 2.4.9.2 | $x^{4} - 2 x^{2} + 2$ | $4$ | $1$ | $9$ | $D_{4}$ | $[2, 3, 7/2]$ | |
| 2.4.8.2 | $x^{4} + 6 x^{2} + 1$ | $4$ | $1$ | $8$ | $C_2^2$ | $[2, 3]$ | |
| $5$ | $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 5.5.6.1 | $x^{5} + 10 x^{2} + 5$ | $5$ | $1$ | $6$ | $D_{5}$ | $[3/2]_{2}$ | |
| 5.5.6.1 | $x^{5} + 10 x^{2} + 5$ | $5$ | $1$ | $6$ | $D_{5}$ | $[3/2]_{2}$ |