Normalized defining polynomial
\( x^{12} - x^{11} + 17 x^{10} - 10 x^{9} + 130 x^{8} - 53 x^{7} + 485 x^{6} - 86 x^{5} + 884 x^{4} - 128 x^{3} + 576 x^{2} + 96 x + 64 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(16218913707543001=7^{6}\cdot 13^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $22.43$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(91=7\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{91}(64,·)$, $\chi_{91}(1,·)$, $\chi_{91}(36,·)$, $\chi_{91}(69,·)$, $\chi_{91}(43,·)$, $\chi_{91}(48,·)$, $\chi_{91}(22,·)$, $\chi_{91}(55,·)$, $\chi_{91}(90,·)$, $\chi_{91}(27,·)$, $\chi_{91}(29,·)$, $\chi_{91}(62,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{7} + \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{4} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{8} a^{9} - \frac{1}{8} a^{8} + \frac{1}{8} a^{7} - \frac{1}{4} a^{6} + \frac{1}{4} a^{5} + \frac{3}{8} a^{4} - \frac{3}{8} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{80} a^{10} - \frac{3}{80} a^{9} - \frac{9}{80} a^{8} - \frac{1}{5} a^{7} + \frac{1}{8} a^{6} - \frac{1}{80} a^{5} + \frac{7}{80} a^{4} + \frac{3}{20} a^{3} + \frac{9}{20} a^{2} + \frac{1}{5} a + \frac{2}{5}$, $\frac{1}{21745215200} a^{11} - \frac{116196059}{21745215200} a^{10} + \frac{350551679}{21745215200} a^{9} - \frac{45189116}{679537975} a^{8} - \frac{2050086367}{10872607600} a^{7} - \frac{6722546521}{21745215200} a^{6} - \frac{8932839297}{21745215200} a^{5} - \frac{61082059}{217452152} a^{4} - \frac{1420732809}{5436303800} a^{3} - \frac{118688469}{543630380} a^{2} + \frac{240056178}{679537975} a + \frac{254858699}{679537975}$
Class group and class number
$C_{7}$, which has order $7$
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 120.784031363 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_6$ (as 12T2):
| An abelian group of order 12 |
| The 12 conjugacy class representatives for $C_6\times C_2$ |
| Character table for $C_6\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{-7}) \), \(\Q(\sqrt{13}) \), \(\Q(\sqrt{-91}) \), 3.3.169.1, \(\Q(\sqrt{-7}, \sqrt{13})\), 6.0.9796423.1, \(\Q(\zeta_{13})^+\), 6.0.127353499.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{6}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/53.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.12.6.1 | $x^{12} + 294 x^{8} + 3430 x^{6} + 21609 x^{4} + 487403 x^{2} + 2941225$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |
| $13$ | 13.12.10.1 | $x^{12} - 117 x^{6} + 10816$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ |