Normalized defining polynomial
\( x^{12} + 273 x^{10} - 4 x^{9} + 30834 x^{8} + 36 x^{7} + 1824563 x^{6} + 30672 x^{5} + 59716095 x^{4} + 2436664 x^{3} + 1053927204 x^{2} + 67270842 x + 7952847101 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(16201367308849608000000000=2^{12}\cdot 3^{16}\cdot 5^{9}\cdot 19^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $126.12$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(3420=2^{2}\cdot 3^{2}\cdot 5\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{3420}(1,·)$, $\chi_{3420}(229,·)$, $\chi_{3420}(1063,·)$, $\chi_{3420}(2281,·)$, $\chi_{3420}(2887,·)$, $\chi_{3420}(2509,·)$, $\chi_{3420}(3343,·)$, $\chi_{3420}(1747,·)$, $\chi_{3420}(1141,·)$, $\chi_{3420}(1369,·)$, $\chi_{3420}(2203,·)$, $\chi_{3420}(607,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{19} a^{6} - \frac{6}{19} a^{4} - \frac{2}{19} a^{3} + \frac{9}{19} a^{2} + \frac{6}{19} a + \frac{1}{19}$, $\frac{1}{19} a^{7} - \frac{6}{19} a^{5} - \frac{2}{19} a^{4} + \frac{9}{19} a^{3} + \frac{6}{19} a^{2} + \frac{1}{19} a$, $\frac{1}{19} a^{8} - \frac{2}{19} a^{5} - \frac{8}{19} a^{4} - \frac{6}{19} a^{3} - \frac{2}{19} a^{2} - \frac{2}{19} a + \frac{6}{19}$, $\frac{1}{19} a^{9} - \frac{8}{19} a^{5} + \frac{1}{19} a^{4} - \frac{6}{19} a^{3} - \frac{3}{19} a^{2} - \frac{1}{19} a + \frac{2}{19}$, $\frac{1}{453372501419} a^{10} + \frac{8151649774}{453372501419} a^{9} + \frac{1683438992}{453372501419} a^{8} - \frac{4570686895}{453372501419} a^{7} - \frac{3782691505}{453372501419} a^{6} + \frac{132064476604}{453372501419} a^{5} - \frac{63602297557}{453372501419} a^{4} - \frac{218404924956}{453372501419} a^{3} - \frac{222784698754}{453372501419} a^{2} - \frac{49068543025}{453372501419} a - \frac{337818242}{6385528189}$, $\frac{1}{13729673886249803051200879} a^{11} - \frac{4340504158875}{13729673886249803051200879} a^{10} + \frac{141353593498403586702350}{13729673886249803051200879} a^{9} - \frac{109230161675210540025424}{13729673886249803051200879} a^{8} + \frac{145924406587456147225066}{13729673886249803051200879} a^{7} + \frac{23910217239152760834250}{13729673886249803051200879} a^{6} - \frac{5511810908240619151275171}{13729673886249803051200879} a^{5} - \frac{5351343092744302039527959}{13729673886249803051200879} a^{4} + \frac{6726286438466887202984081}{13729673886249803051200879} a^{3} - \frac{6822650848209841936126002}{13729673886249803051200879} a^{2} - \frac{1237288915928416823258973}{13729673886249803051200879} a - \frac{61444081573127290050924}{193375688538729620439449}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{14}\times C_{364}$, which has order $163072$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 201.000834787 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 12 |
| The 12 conjugacy class representatives for $C_{12}$ |
| Character table for $C_{12}$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{9})^+\), 4.0.722000.3, 6.6.820125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.12.0.1}{12} }$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/13.12.0.1}{12} }$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}$ | R | ${\href{/LocalNumberField/23.12.0.1}{12} }$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }$ | ${\href{/LocalNumberField/47.12.0.1}{12} }$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.12.12.25 | $x^{12} - 78 x^{10} - 1621 x^{8} + 460 x^{6} - 1977 x^{4} + 866 x^{2} + 749$ | $2$ | $6$ | $12$ | $C_{12}$ | $[2]^{6}$ |
| $3$ | 3.12.16.14 | $x^{12} + 72 x^{11} - 36 x^{10} + 108 x^{9} - 108 x^{8} + 54 x^{7} + 72 x^{6} - 81 x^{5} - 81 x^{4} - 81 x^{3} + 81 x^{2} - 81$ | $3$ | $4$ | $16$ | $C_{12}$ | $[2]^{4}$ |
| $5$ | 5.12.9.2 | $x^{12} - 10 x^{8} + 25 x^{4} - 500$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ |
| $19$ | 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |