Normalized defining polynomial
\( x^{12} - 6x^{10} - 9x^{8} - 30x^{7} + 62x^{6} + 90x^{5} - 33x^{4} + 210x^{3} + 693x^{2} + 510x + 151 \)
Invariants
Degree: | $12$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 6]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(1586874322944000000\) \(\medspace = 2^{18}\cdot 3^{18}\cdot 5^{6}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(32.86\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2^{3/2}3^{31/18}5^{1/2}\approx 41.95066245002997$ | ||
Ramified primes: | \(2\), \(3\), \(5\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q\) | ||
$\card{ \Aut(K/\Q) }$: | $6$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{11}a^{10}-\frac{2}{11}a^{9}-\frac{5}{11}a^{8}+\frac{5}{11}a^{7}-\frac{4}{11}a^{6}-\frac{4}{11}a^{5}+\frac{5}{11}a^{4}+\frac{4}{11}a^{3}-\frac{1}{11}a^{2}+\frac{2}{11}a-\frac{1}{11}$, $\frac{1}{135680484049}a^{11}-\frac{135725696}{12334589459}a^{10}+\frac{31270877266}{135680484049}a^{9}-\frac{24929020627}{135680484049}a^{8}-\frac{66312541916}{135680484049}a^{7}-\frac{25874197834}{135680484049}a^{6}-\frac{21237479585}{135680484049}a^{5}+\frac{53821003052}{135680484049}a^{4}+\frac{53199844815}{135680484049}a^{3}+\frac{3511063813}{12334589459}a^{2}-\frac{32984610557}{135680484049}a+\frac{881379981}{135680484049}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
$C_{4}$, which has order $4$
Unit group
Rank: | $5$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{20102310}{4678637381}a^{11}-\frac{24460479}{4678637381}a^{10}-\frac{117764798}{4678637381}a^{9}+\frac{183057192}{4678637381}a^{8}-\frac{262500570}{4678637381}a^{7}-\frac{475949607}{4678637381}a^{6}+\frac{2194984764}{4678637381}a^{5}-\frac{683948907}{4678637381}a^{4}-\frac{2471055846}{4678637381}a^{3}+\frac{6570504027}{4678637381}a^{2}+\frac{7012235124}{4678637381}a-\frac{4984041970}{4678637381}$, $\frac{313631838}{135680484049}a^{11}-\frac{671076746}{135680484049}a^{10}-\frac{343840548}{135680484049}a^{9}-\frac{227118142}{135680484049}a^{8}-\frac{7750676317}{135680484049}a^{7}+\frac{16957490752}{135680484049}a^{6}+\frac{5405708757}{135680484049}a^{5}+\frac{1943971472}{135680484049}a^{4}+\frac{86229464797}{135680484049}a^{3}-\frac{170323386311}{135680484049}a^{2}+\frac{8329619374}{12334589459}a+\frac{78228899797}{135680484049}$, $\frac{309217673}{135680484049}a^{11}-\frac{1356582534}{135680484049}a^{10}-\frac{482495190}{135680484049}a^{9}+\frac{2811086892}{135680484049}a^{8}-\frac{4522151846}{135680484049}a^{7}+\frac{13257126191}{135680484049}a^{6}+\frac{2512186792}{12334589459}a^{5}-\frac{22269553745}{135680484049}a^{4}-\frac{9936979556}{135680484049}a^{3}+\frac{64287927692}{135680484049}a^{2}+\frac{63569266825}{135680484049}a+\frac{23764689958}{135680484049}$, $\frac{4426458173}{135680484049}a^{11}-\frac{230120962}{135680484049}a^{10}-\frac{27861595951}{135680484049}a^{9}+\frac{514074317}{12334589459}a^{8}-\frac{34179776208}{135680484049}a^{7}-\frac{145123667069}{135680484049}a^{6}+\frac{313696015418}{135680484049}a^{5}+\frac{353707622016}{135680484049}a^{4}-\frac{313803641070}{135680484049}a^{3}+\frac{1015740550236}{135680484049}a^{2}+\frac{2875428659724}{135680484049}a+\frac{1617006602118}{135680484049}$, $\frac{318925197}{135680484049}a^{11}+\frac{962217640}{135680484049}a^{10}-\frac{3378230893}{135680484049}a^{9}-\frac{5605455583}{135680484049}a^{8}+\frac{8009211792}{135680484049}a^{7}-\frac{19188934340}{135680484049}a^{6}-\frac{1948467750}{135680484049}a^{5}+\frac{128592076962}{135680484049}a^{4}-\frac{40515560264}{135680484049}a^{3}-\frac{154954055046}{135680484049}a^{2}+\frac{38360426289}{12334589459}a+\frac{658823299471}{135680484049}$ | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 4457.650182835134 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{6}\cdot 4457.650182835134 \cdot 4}{2\cdot\sqrt{1586874322944000000}}\cr\approx \mathstrut & 0.435455643399551 \end{aligned}\]
Galois group
$C_6\times S_3$ (as 12T18):
A solvable group of order 36 |
The 18 conjugacy class representatives for $C_6\times S_3$ |
Character table for $C_6\times S_3$ |
Intermediate fields
\(\Q(\sqrt{-30}) \), \(\Q(\sqrt{-6}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{5}, \sqrt{-6})\), 6.0.1259712000.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Galois closure: | deg 36 |
Degree 18 siblings: | deg 18, 18.0.1295354998363672018944000000.1 |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | R | ${\href{/padicField/7.6.0.1}{6} }^{2}$ | ${\href{/padicField/11.3.0.1}{3} }^{2}{,}\,{\href{/padicField/11.1.0.1}{1} }^{6}$ | ${\href{/padicField/13.6.0.1}{6} }{,}\,{\href{/padicField/13.2.0.1}{2} }^{3}$ | ${\href{/padicField/17.6.0.1}{6} }^{2}$ | ${\href{/padicField/19.2.0.1}{2} }^{6}$ | ${\href{/padicField/23.6.0.1}{6} }{,}\,{\href{/padicField/23.2.0.1}{2} }^{3}$ | ${\href{/padicField/29.3.0.1}{3} }^{2}{,}\,{\href{/padicField/29.1.0.1}{1} }^{6}$ | ${\href{/padicField/31.3.0.1}{3} }^{2}{,}\,{\href{/padicField/31.1.0.1}{1} }^{6}$ | ${\href{/padicField/37.2.0.1}{2} }^{6}$ | ${\href{/padicField/41.6.0.1}{6} }^{2}$ | ${\href{/padicField/43.6.0.1}{6} }{,}\,{\href{/padicField/43.2.0.1}{2} }^{3}$ | ${\href{/padicField/47.6.0.1}{6} }{,}\,{\href{/padicField/47.2.0.1}{2} }^{3}$ | ${\href{/padicField/53.2.0.1}{2} }^{6}$ | ${\href{/padicField/59.3.0.1}{3} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\) | 2.12.18.23 | $x^{12} - 12 x^{11} + 48 x^{10} - 344 x^{9} + 8244 x^{8} - 31136 x^{7} + 54848 x^{6} - 23104 x^{5} + 18864 x^{4} - 7360 x^{3} + 5120 x^{2} + 5760 x + 1472$ | $2$ | $6$ | $18$ | $C_6\times C_2$ | $[3]^{6}$ |
\(3\) | 3.12.18.31 | $x^{12} - 12 x^{11} + 84 x^{10} - 72 x^{9} + 108 x^{8} + 42 x^{6} - 36 x^{5} + 36 x^{4} + 9$ | $6$ | $2$ | $18$ | $C_6\times S_3$ | $[3/2, 2]_{2}^{2}$ |
\(5\) | 5.6.3.1 | $x^{6} + 60 x^{5} + 1221 x^{4} + 8846 x^{3} + 9864 x^{2} + 29208 x + 29309$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
5.6.3.1 | $x^{6} + 60 x^{5} + 1221 x^{4} + 8846 x^{3} + 9864 x^{2} + 29208 x + 29309$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
Artin representations
Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
---|---|---|---|---|---|---|---|
* | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
* | 1.24.2t1.b.a | $1$ | $ 2^{3} \cdot 3 $ | \(\Q(\sqrt{-6}) \) | $C_2$ (as 2T1) | $1$ | $-1$ |
* | 1.120.2t1.b.a | $1$ | $ 2^{3} \cdot 3 \cdot 5 $ | \(\Q(\sqrt{-30}) \) | $C_2$ (as 2T1) | $1$ | $-1$ |
* | 1.5.2t1.a.a | $1$ | $ 5 $ | \(\Q(\sqrt{5}) \) | $C_2$ (as 2T1) | $1$ | $1$ |
1.45.6t1.a.a | $1$ | $ 3^{2} \cdot 5 $ | 6.6.820125.1 | $C_6$ (as 6T1) | $0$ | $1$ | |
1.72.6t1.c.a | $1$ | $ 2^{3} \cdot 3^{2}$ | 6.0.10077696.1 | $C_6$ (as 6T1) | $0$ | $-1$ | |
1.72.6t1.c.b | $1$ | $ 2^{3} \cdot 3^{2}$ | 6.0.10077696.1 | $C_6$ (as 6T1) | $0$ | $-1$ | |
1.360.6t1.b.a | $1$ | $ 2^{3} \cdot 3^{2} \cdot 5 $ | 6.0.1259712000.1 | $C_6$ (as 6T1) | $0$ | $-1$ | |
1.9.3t1.a.a | $1$ | $ 3^{2}$ | \(\Q(\zeta_{9})^+\) | $C_3$ (as 3T1) | $0$ | $1$ | |
1.45.6t1.a.b | $1$ | $ 3^{2} \cdot 5 $ | 6.6.820125.1 | $C_6$ (as 6T1) | $0$ | $1$ | |
1.9.3t1.a.b | $1$ | $ 3^{2}$ | \(\Q(\zeta_{9})^+\) | $C_3$ (as 3T1) | $0$ | $1$ | |
1.360.6t1.b.b | $1$ | $ 2^{3} \cdot 3^{2} \cdot 5 $ | 6.0.1259712000.1 | $C_6$ (as 6T1) | $0$ | $-1$ | |
2.1080.3t2.a.a | $2$ | $ 2^{3} \cdot 3^{3} \cdot 5 $ | 3.1.1080.1 | $S_3$ (as 3T2) | $1$ | $0$ | |
2.1080.6t3.c.a | $2$ | $ 2^{3} \cdot 3^{3} \cdot 5 $ | 6.0.27993600.1 | $D_{6}$ (as 6T3) | $1$ | $0$ | |
* | 2.3240.12t18.b.a | $2$ | $ 2^{3} \cdot 3^{4} \cdot 5 $ | 12.0.1586874322944000000.9 | $C_6\times S_3$ (as 12T18) | $0$ | $0$ |
* | 2.3240.6t5.c.a | $2$ | $ 2^{3} \cdot 3^{4} \cdot 5 $ | 6.0.1259712000.3 | $S_3\times C_3$ (as 6T5) | $0$ | $0$ |
* | 2.3240.12t18.b.b | $2$ | $ 2^{3} \cdot 3^{4} \cdot 5 $ | 12.0.1586874322944000000.9 | $C_6\times S_3$ (as 12T18) | $0$ | $0$ |
* | 2.3240.6t5.c.b | $2$ | $ 2^{3} \cdot 3^{4} \cdot 5 $ | 6.0.1259712000.3 | $S_3\times C_3$ (as 6T5) | $0$ | $0$ |