Normalized defining polynomial
\( x^{12} + 228 x^{10} + 26334 x^{8} + 1542876 x^{6} + 57419577 x^{4} + 588796776 x^{2} + 2100205584 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(152019244012074463020096000000=2^{12}\cdot 3^{18}\cdot 5^{6}\cdot 19^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $270.29$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(3420=2^{2}\cdot 3^{2}\cdot 5\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{3420}(1,·)$, $\chi_{3420}(3419,·)$, $\chi_{3420}(1319,·)$, $\chi_{3420}(2089,·)$, $\chi_{3420}(1451,·)$, $\chi_{3420}(1331,·)$, $\chi_{3420}(2401,·)$, $\chi_{3420}(1969,·)$, $\chi_{3420}(2291,·)$, $\chi_{3420}(2101,·)$, $\chi_{3420}(1129,·)$, $\chi_{3420}(1019,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{8} a^{4} + \frac{1}{8} a^{2} - \frac{1}{2}$, $\frac{1}{8} a^{5} + \frac{1}{8} a^{3} - \frac{1}{2} a$, $\frac{1}{3648} a^{6} - \frac{1}{32} a^{4} + \frac{25}{64} a^{2} + \frac{5}{16}$, $\frac{1}{7296} a^{7} + \frac{3}{64} a^{5} - \frac{31}{128} a^{3} + \frac{13}{32} a$, $\frac{1}{284544} a^{8} + \frac{1}{23712} a^{6} + \frac{3}{128} a^{4} + \frac{1213}{2496} a^{2} - \frac{35}{208}$, $\frac{1}{19064448} a^{9} + \frac{41}{3177408} a^{7} - \frac{217}{8576} a^{5} - \frac{14935}{83616} a^{3} + \frac{449}{1742} a$, $\frac{1}{316622352384} a^{10} - \frac{34691}{105540784128} a^{8} - \frac{528183}{11726753792} a^{6} + \frac{327142733}{5554778112} a^{4} - \frac{19941777}{77149696} a^{2} - \frac{43145}{575744}$, $\frac{1}{18047474085888} a^{11} - \frac{5905}{316622352384} a^{9} + \frac{2060147}{35180261376} a^{7} + \frac{1426957709}{316622352384} a^{5} - \frac{133141193}{694347264} a^{3} + \frac{44420087}{115724544} a$
Class group and class number
$C_{2}\times C_{6}\times C_{12}\times C_{11856}$, which has order $1707264$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 475218.31627778086 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_6$ (as 12T2):
| An abelian group of order 12 |
| The 12 conjugacy class representatives for $C_6\times C_2$ |
| Character table for $C_6\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{-285}) \), \(\Q(\sqrt{3}) \), \(\Q(\sqrt{-95}) \), 3.3.29241.1, \(\Q(\sqrt{3}, \sqrt{-95})\), 6.0.389896452936000.2, 6.6.164166927552.2, 6.0.2030710692375.4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/13.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}$ | R | ${\href{/LocalNumberField/23.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/37.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.2.2 | $x^{2} + 2 x - 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ |
| 2.2.2.2 | $x^{2} + 2 x - 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.2 | $x^{2} + 2 x - 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.2 | $x^{2} + 2 x - 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.2 | $x^{2} + 2 x - 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.2 | $x^{2} + 2 x - 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| $3$ | 3.6.9.1 | $x^{6} + 3 x^{4} + 15$ | $6$ | $1$ | $9$ | $C_6$ | $[2]_{2}$ |
| 3.6.9.1 | $x^{6} + 3 x^{4} + 15$ | $6$ | $1$ | $9$ | $C_6$ | $[2]_{2}$ | |
| $5$ | 5.12.6.1 | $x^{12} + 500 x^{6} - 3125 x^{2} + 62500$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |
| $19$ | 19.12.10.1 | $x^{12} - 171 x^{6} + 23104$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ |