Normalized defining polynomial
\( x^{12} - 3 x^{11} + 11 x^{10} - 12 x^{9} + 22 x^{8} + 22 x^{7} + 43 x^{6} + 46 x^{5} + 193 x^{4} + 259 x^{2} + 98 x + 49 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(151939915084881=3^{6}\cdot 7^{6}\cdot 11^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $15.20$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3} a^{6} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{9} a^{7} - \frac{1}{9} a^{6} - \frac{1}{9} a^{5} - \frac{1}{3} a^{4} - \frac{4}{9} a^{3} + \frac{1}{9} a^{2} + \frac{2}{9} a - \frac{4}{9}$, $\frac{1}{63} a^{8} + \frac{1}{9} a^{6} + \frac{23}{63} a^{5} - \frac{1}{9} a^{4} - \frac{1}{3} a^{3} - \frac{2}{21} a^{2} + \frac{1}{9} a + \frac{2}{9}$, $\frac{1}{189} a^{9} - \frac{1}{27} a^{7} - \frac{26}{189} a^{6} - \frac{8}{27} a^{5} - \frac{2}{9} a^{4} - \frac{13}{189} a^{3} + \frac{8}{27} a^{2} + \frac{7}{27} a - \frac{10}{27}$, $\frac{1}{567} a^{10} - \frac{1}{567} a^{9} - \frac{1}{567} a^{8} + \frac{23}{567} a^{7} - \frac{10}{189} a^{6} - \frac{79}{567} a^{5} + \frac{50}{567} a^{4} - \frac{4}{63} a^{3} - \frac{190}{567} a^{2} - \frac{26}{81} a - \frac{29}{81}$, $\frac{1}{141183} a^{11} + \frac{94}{141183} a^{10} + \frac{55}{47061} a^{9} + \frac{34}{15687} a^{8} + \frac{5053}{141183} a^{7} - \frac{14062}{141183} a^{6} + \frac{3026}{6723} a^{5} + \frac{43837}{141183} a^{4} - \frac{7759}{141183} a^{3} - \frac{62395}{141183} a^{2} - \frac{3266}{6723} a - \frac{9172}{20169}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{1466}{141183} a^{11} - \frac{4126}{141183} a^{10} + \frac{4934}{47061} a^{9} - \frac{1616}{15687} a^{8} + \frac{28085}{141183} a^{7} + \frac{29947}{141183} a^{6} + \frac{23677}{47061} a^{5} + \frac{52175}{141183} a^{4} + \frac{241903}{141183} a^{3} - \frac{44993}{141183} a^{2} + \frac{14507}{6723} a + \frac{16282}{20169} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 312.443391661 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 12 |
| The 6 conjugacy class representatives for $D_6$ |
| Character table for $D_6$ |
Intermediate fields
| \(\Q(\sqrt{-231}) \), \(\Q(\sqrt{77}) \), \(\Q(\sqrt{-3}) \), 3.1.231.1 x3, \(\Q(\sqrt{-3}, \sqrt{77})\), 6.0.12326391.1, 6.2.4108797.2 x3, 6.0.160083.1 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 6 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{2}$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}$ | R | R | ${\href{/LocalNumberField/13.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $7$ | 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $11$ | 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |