Normalized defining polynomial
\( x^{12} - 4 x^{11} + 409 x^{10} - 1618 x^{9} + 64702 x^{8} - 232812 x^{7} + 4913521 x^{6} - 14897420 x^{5} + 177880768 x^{4} - 392841486 x^{3} + 2512428095 x^{2} - 2287314156 x + 6688402169 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(15088690771598141370990592=2^{16}\cdot 11^{6}\cdot 37^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $125.38$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{11} a^{6} - \frac{2}{11} a^{5} - \frac{1}{11} a^{4} + \frac{3}{11} a^{3} - \frac{1}{11} a + \frac{3}{11}$, $\frac{1}{11} a^{7} - \frac{5}{11} a^{5} + \frac{1}{11} a^{4} - \frac{5}{11} a^{3} - \frac{1}{11} a^{2} + \frac{1}{11} a - \frac{5}{11}$, $\frac{1}{407} a^{8} + \frac{7}{407} a^{7} - \frac{8}{407} a^{6} - \frac{28}{407} a^{5} + \frac{16}{407} a^{4} + \frac{32}{407} a^{3} + \frac{93}{407} a^{2} + \frac{93}{407} a - \frac{9}{37}$, $\frac{1}{1221} a^{9} + \frac{18}{407} a^{7} + \frac{28}{1221} a^{6} - \frac{343}{1221} a^{5} + \frac{31}{1221} a^{4} + \frac{128}{1221} a^{3} + \frac{184}{407} a^{2} + \frac{175}{1221} a + \frac{545}{1221}$, $\frac{1}{1221} a^{10} - \frac{17}{1221} a^{7} - \frac{2}{111} a^{6} + \frac{100}{1221} a^{5} - \frac{292}{1221} a^{4} + \frac{163}{407} a^{3} - \frac{8}{33} a^{2} - \frac{10}{33} a - \frac{105}{407}$, $\frac{1}{2195197449895964586635733879994388631} a^{11} + \frac{764629981400805583603714154937254}{2195197449895964586635733879994388631} a^{10} + \frac{82453054357813567747253734390607}{731732483298654862211911293331462877} a^{9} - \frac{2369520835002274433654342903037599}{2195197449895964586635733879994388631} a^{8} - \frac{16916568239188089661645252763175170}{2195197449895964586635733879994388631} a^{7} + \frac{86165803772360833643030717392849487}{2195197449895964586635733879994388631} a^{6} - \frac{51405471785912167397435172010116148}{199563404535996780603248534544944421} a^{5} + \frac{1049610113748515828910757399569515422}{2195197449895964586635733879994388631} a^{4} + \frac{794258043107251628004716355003580969}{2195197449895964586635733879994388631} a^{3} - \frac{60137951913416260877437637465305370}{2195197449895964586635733879994388631} a^{2} - \frac{896187434094641303087377187009264081}{2195197449895964586635733879994388631} a - \frac{194646656911569584287379198403386619}{731732483298654862211911293331462877}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{22}\times C_{748}$, which has order $131648$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 220.342128705 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 12 |
| The 6 conjugacy class representatives for $C_3 : C_4$ |
| Character table for $C_3 : C_4$ |
Intermediate fields
| \(\Q(\sqrt{37}) \), 3.3.148.1 x3, 4.0.98064208.2, 6.6.810448.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{4}$ | R | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}$ | R | ${\href{/LocalNumberField/41.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.12.16.18 | $x^{12} + x^{10} + 6 x^{8} - 3 x^{6} + 6 x^{4} + x^{2} - 3$ | $6$ | $2$ | $16$ | $C_3 : C_4$ | $[2]_{3}^{2}$ |
| $11$ | 11.6.3.2 | $x^{6} - 121 x^{2} + 3993$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 11.6.3.2 | $x^{6} - 121 x^{2} + 3993$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $37$ | 37.4.3.2 | $x^{4} - 148$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 37.4.3.2 | $x^{4} - 148$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 37.4.3.2 | $x^{4} - 148$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |