Normalized defining polynomial
\( x^{12} - 4 x^{11} + 67 x^{10} - 208 x^{9} + 2040 x^{8} - 4886 x^{7} + 35616 x^{6} - 63001 x^{5} + 375610 x^{4} - 441883 x^{3} + 2275171 x^{2} - 1343635 x + 6235475 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1486006368571562353321=13^{10}\cdot 47^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $58.12$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 47$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(611=13\cdot 47\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{611}(1,·)$, $\chi_{611}(610,·)$, $\chi_{611}(516,·)$, $\chi_{611}(328,·)$, $\chi_{611}(140,·)$, $\chi_{611}(142,·)$, $\chi_{611}(48,·)$, $\chi_{611}(563,·)$, $\chi_{611}(469,·)$, $\chi_{611}(471,·)$, $\chi_{611}(283,·)$, $\chi_{611}(95,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{3} a^{9} - \frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{15} a^{10} - \frac{2}{15} a^{9} + \frac{1}{5} a^{8} + \frac{1}{5} a^{7} - \frac{4}{15} a^{6} + \frac{1}{15} a^{5} - \frac{2}{15} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{7}{15} a + \frac{1}{3}$, $\frac{1}{961465269546606895750605} a^{11} - \frac{14117655880055018089834}{961465269546606895750605} a^{10} + \frac{80238281244096068385692}{961465269546606895750605} a^{9} - \frac{461298255871023197084848}{961465269546606895750605} a^{8} - \frac{36249920091557338150663}{192293053909321379150121} a^{7} - \frac{168341934153813569538376}{961465269546606895750605} a^{6} + \frac{56341648672756178739987}{320488423182202298583535} a^{5} + \frac{323678146507893005991884}{961465269546606895750605} a^{4} - \frac{23047709561464431905233}{64097684636440459716707} a^{3} - \frac{342788645149659699875198}{961465269546606895750605} a^{2} + \frac{11497404885726800323602}{320488423182202298583535} a - \frac{2783903859626486931596}{64097684636440459716707}$
Class group and class number
$C_{20}\times C_{140}$, which has order $2800$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 120.784031363 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_6$ (as 12T2):
| An abelian group of order 12 |
| The 12 conjugacy class representatives for $C_6\times C_2$ |
| Character table for $C_6\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{-47}) \), \(\Q(\sqrt{13}) \), \(\Q(\sqrt{-611}) \), 3.3.169.1, \(\Q(\sqrt{13}, \sqrt{-47})\), 6.0.2965288703.1, \(\Q(\zeta_{13})^+\), 6.0.38548753139.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/3.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}$ | R | ${\href{/LocalNumberField/17.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}$ | R | ${\href{/LocalNumberField/53.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.12.10.1 | $x^{12} - 117 x^{6} + 10816$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ |
| $47$ | 47.4.2.1 | $x^{4} + 1175 x^{2} + 373321$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 47.4.2.1 | $x^{4} + 1175 x^{2} + 373321$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 47.4.2.1 | $x^{4} + 1175 x^{2} + 373321$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |