Normalized defining polynomial
\( x^{12} - x^{11} + 4 x^{10} + 68 x^{9} + 247 x^{8} + 402 x^{7} + 1655 x^{6} + 9677 x^{5} + 30732 x^{4} + 59399 x^{3} + 75456 x^{2} + 56386 x + 17861 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1486006368571562353321=13^{10}\cdot 47^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $58.12$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 47$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{15} a^{9} - \frac{1}{5} a^{8} + \frac{2}{15} a^{7} - \frac{4}{15} a^{6} + \frac{1}{3} a^{5} + \frac{1}{5} a^{3} + \frac{1}{15} a^{2} + \frac{1}{15} a - \frac{2}{15}$, $\frac{1}{15} a^{10} - \frac{7}{15} a^{8} + \frac{2}{15} a^{7} - \frac{7}{15} a^{6} + \frac{1}{5} a^{4} - \frac{1}{3} a^{3} + \frac{4}{15} a^{2} + \frac{1}{15} a - \frac{2}{5}$, $\frac{1}{1164050692668827655} a^{11} - \frac{11336268238331746}{388016897556275885} a^{10} + \frac{4637243853984389}{1164050692668827655} a^{9} + \frac{633195090307264}{232810138533765531} a^{8} - \frac{251474972557649041}{1164050692668827655} a^{7} - \frac{168355547304192481}{388016897556275885} a^{6} + \frac{77730877299548386}{388016897556275885} a^{5} - \frac{552797506365290459}{1164050692668827655} a^{4} + \frac{534641242779841822}{1164050692668827655} a^{3} + \frac{90306021487771535}{232810138533765531} a^{2} + \frac{84048706422244324}{388016897556275885} a + \frac{174641649383993802}{388016897556275885}$
Class group and class number
$C_{2}\times C_{20}$, which has order $40$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 7222.39514479 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times A_4$ (as 12T25):
| A solvable group of order 48 |
| The 16 conjugacy class representatives for $C_2^2 \times A_4$ |
| Character table for $C_2^2 \times A_4$ |
Intermediate fields
| \(\Q(\sqrt{-47}) \), 3.3.169.1, 6.0.17450771.1, 6.6.820186237.1, 6.0.2965288703.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 12 siblings: | 12.0.672705463364220169.1, 12.0.672705463364220169.2, 12.0.304529408494441.1, 12.0.1486006368571562353321.2 |
| Degree 16 sibling: | data not computed |
| Degree 24 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/3.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}$ | R | ${\href{/LocalNumberField/17.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}$ | R | ${\href{/LocalNumberField/53.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.12.10.1 | $x^{12} - 117 x^{6} + 10816$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ |
| $47$ | 47.2.1.2 | $x^{2} + 94$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 47.2.1.2 | $x^{2} + 94$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 47.2.1.2 | $x^{2} + 94$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 47.2.1.2 | $x^{2} + 94$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 47.4.2.1 | $x^{4} + 1175 x^{2} + 373321$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |