Properties

Label 12.0.146...408.1
Degree $12$
Signature $[0, 6]$
Discriminant $1.463\times 10^{24}$
Root discriminant \(103.22\)
Ramified primes $2,17,19$
Class number $32$ (GRH)
Class group [4, 8] (GRH)
Galois group $D_{12}$ (as 12T12)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^12 - 4*x^11 + 34*x^10 - 192*x^9 + 2255*x^8 - 8416*x^7 + 20394*x^6 - 2272*x^5 + 143792*x^4 - 271424*x^3 + 129376*x^2 + 327680*x + 1048576)
 
gp: K = bnfinit(y^12 - 4*y^11 + 34*y^10 - 192*y^9 + 2255*y^8 - 8416*y^7 + 20394*y^6 - 2272*y^5 + 143792*y^4 - 271424*y^3 + 129376*y^2 + 327680*y + 1048576, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^12 - 4*x^11 + 34*x^10 - 192*x^9 + 2255*x^8 - 8416*x^7 + 20394*x^6 - 2272*x^5 + 143792*x^4 - 271424*x^3 + 129376*x^2 + 327680*x + 1048576);
 
oscar: Qx, x = polynomial_ring(QQ); K, a = number_field(x^12 - 4*x^11 + 34*x^10 - 192*x^9 + 2255*x^8 - 8416*x^7 + 20394*x^6 - 2272*x^5 + 143792*x^4 - 271424*x^3 + 129376*x^2 + 327680*x + 1048576)
 

\( x^{12} - 4 x^{11} + 34 x^{10} - 192 x^{9} + 2255 x^{8} - 8416 x^{7} + 20394 x^{6} - 2272 x^{5} + \cdots + 1048576 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $12$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 6]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(1462520021180890181009408\) \(\medspace = 2^{18}\cdot 17^{9}\cdot 19^{6}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(103.22\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{3/2}17^{3/4}19^{1/2}\approx 103.21872376945974$
Ramified primes:   \(2\), \(17\), \(19\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{17}) \)
$\card{ \Aut(K/\Q) }$:  $2$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2}a^{4}-\frac{1}{2}a^{2}$, $\frac{1}{2}a^{5}-\frac{1}{2}a^{3}$, $\frac{1}{4}a^{6}-\frac{1}{4}a^{5}-\frac{1}{4}a^{4}+\frac{1}{4}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a$, $\frac{1}{4}a^{7}+\frac{1}{4}a^{3}-\frac{1}{2}a$, $\frac{1}{8}a^{8}-\frac{1}{4}a^{5}+\frac{1}{8}a^{4}-\frac{1}{4}a^{3}-\frac{1}{4}a^{2}-\frac{1}{2}a$, $\frac{1}{32}a^{9}-\frac{1}{16}a^{7}-\frac{1}{32}a^{5}+\frac{1}{8}a^{4}-\frac{5}{16}a^{3}+\frac{1}{4}a^{2}+\frac{1}{4}a$, $\frac{1}{53504}a^{10}+\frac{349}{26752}a^{9}+\frac{1271}{26752}a^{8}-\frac{663}{13376}a^{7}-\frac{1913}{53504}a^{6}-\frac{6359}{26752}a^{5}-\frac{4701}{26752}a^{4}-\frac{4683}{13376}a^{3}-\frac{1135}{6688}a^{2}+\frac{387}{3344}a-\frac{51}{209}$, $\frac{1}{78\!\cdots\!40}a^{11}+\frac{48\!\cdots\!43}{19\!\cdots\!60}a^{10}-\frac{44\!\cdots\!87}{39\!\cdots\!20}a^{9}+\frac{13\!\cdots\!67}{22\!\cdots\!20}a^{8}+\frac{85\!\cdots\!49}{71\!\cdots\!40}a^{7}+\frac{82\!\cdots\!73}{49\!\cdots\!40}a^{6}-\frac{75\!\cdots\!19}{39\!\cdots\!20}a^{5}+\frac{69\!\cdots\!95}{61\!\cdots\!08}a^{4}-\frac{96\!\cdots\!33}{49\!\cdots\!40}a^{3}+\frac{55\!\cdots\!17}{12\!\cdots\!60}a^{2}-\frac{59\!\cdots\!83}{22\!\cdots\!20}a+\frac{33\!\cdots\!79}{19\!\cdots\!15}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $2$

Class group and class number

$C_{4}\times C_{8}$, which has order $32$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $5$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{12\!\cdots\!65}{47\!\cdots\!16}a^{11}-\frac{11\!\cdots\!35}{23\!\cdots\!08}a^{10}+\frac{51\!\cdots\!59}{23\!\cdots\!08}a^{9}-\frac{19\!\cdots\!05}{10\!\cdots\!64}a^{8}+\frac{56\!\cdots\!25}{43\!\cdots\!56}a^{7}-\frac{24\!\cdots\!23}{23\!\cdots\!08}a^{6}+\frac{83\!\cdots\!11}{23\!\cdots\!08}a^{5}-\frac{11\!\cdots\!75}{11\!\cdots\!04}a^{4}+\frac{82\!\cdots\!57}{59\!\cdots\!52}a^{3}-\frac{20\!\cdots\!65}{29\!\cdots\!76}a^{2}+\frac{22\!\cdots\!92}{40\!\cdots\!57}a-\frac{24\!\cdots\!09}{93\!\cdots\!43}$, $\frac{90\!\cdots\!47}{15\!\cdots\!48}a^{11}-\frac{33\!\cdots\!79}{39\!\cdots\!12}a^{10}-\frac{51\!\cdots\!53}{78\!\cdots\!24}a^{9}-\frac{14\!\cdots\!41}{44\!\cdots\!24}a^{8}+\frac{17\!\cdots\!87}{14\!\cdots\!68}a^{7}-\frac{12\!\cdots\!83}{98\!\cdots\!28}a^{6}-\frac{10\!\cdots\!41}{78\!\cdots\!24}a^{5}-\frac{89\!\cdots\!95}{24\!\cdots\!32}a^{4}+\frac{11\!\cdots\!57}{98\!\cdots\!28}a^{3}-\frac{34\!\cdots\!93}{24\!\cdots\!32}a^{2}-\frac{14\!\cdots\!89}{44\!\cdots\!24}a-\frac{20\!\cdots\!79}{38\!\cdots\!63}$, $\frac{23\!\cdots\!61}{78\!\cdots\!40}a^{11}+\frac{12\!\cdots\!03}{19\!\cdots\!60}a^{10}+\frac{76\!\cdots\!13}{39\!\cdots\!20}a^{9}+\frac{67\!\cdots\!63}{10\!\cdots\!80}a^{8}-\frac{41\!\cdots\!11}{71\!\cdots\!40}a^{7}+\frac{21\!\cdots\!33}{49\!\cdots\!40}a^{6}+\frac{20\!\cdots\!61}{39\!\cdots\!20}a^{5}+\frac{16\!\cdots\!13}{12\!\cdots\!16}a^{4}-\frac{20\!\cdots\!53}{49\!\cdots\!40}a^{3}+\frac{53\!\cdots\!57}{12\!\cdots\!60}a^{2}+\frac{24\!\cdots\!97}{22\!\cdots\!20}a+\frac{36\!\cdots\!09}{19\!\cdots\!15}$, $\frac{39\!\cdots\!33}{98\!\cdots\!80}a^{11}-\frac{37\!\cdots\!77}{49\!\cdots\!40}a^{10}+\frac{42\!\cdots\!19}{49\!\cdots\!40}a^{9}-\frac{13\!\cdots\!67}{22\!\cdots\!20}a^{8}+\frac{61\!\cdots\!97}{89\!\cdots\!80}a^{7}-\frac{78\!\cdots\!93}{49\!\cdots\!40}a^{6}-\frac{36\!\cdots\!97}{49\!\cdots\!40}a^{5}+\frac{64\!\cdots\!55}{49\!\cdots\!64}a^{4}+\frac{79\!\cdots\!67}{12\!\cdots\!60}a^{3}+\frac{49\!\cdots\!29}{61\!\cdots\!80}a^{2}+\frac{92\!\cdots\!93}{13\!\cdots\!20}a-\frac{54\!\cdots\!19}{19\!\cdots\!15}$, $\frac{27\!\cdots\!09}{78\!\cdots\!40}a^{11}-\frac{13\!\cdots\!53}{19\!\cdots\!60}a^{10}+\frac{38\!\cdots\!17}{39\!\cdots\!20}a^{9}-\frac{51\!\cdots\!61}{11\!\cdots\!60}a^{8}+\frac{47\!\cdots\!61}{71\!\cdots\!40}a^{7}-\frac{36\!\cdots\!39}{24\!\cdots\!20}a^{6}+\frac{62\!\cdots\!11}{20\!\cdots\!80}a^{5}+\frac{32\!\cdots\!21}{49\!\cdots\!64}a^{4}+\frac{29\!\cdots\!63}{49\!\cdots\!40}a^{3}+\frac{17\!\cdots\!43}{12\!\cdots\!60}a^{2}-\frac{75\!\cdots\!87}{22\!\cdots\!20}a-\frac{21\!\cdots\!59}{19\!\cdots\!15}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 37831630.60674724 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{6}\cdot 37831630.60674724 \cdot 32}{2\cdot\sqrt{1462520021180890181009408}}\cr\approx \mathstrut & 30.7966404927531 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^12 - 4*x^11 + 34*x^10 - 192*x^9 + 2255*x^8 - 8416*x^7 + 20394*x^6 - 2272*x^5 + 143792*x^4 - 271424*x^3 + 129376*x^2 + 327680*x + 1048576)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^12 - 4*x^11 + 34*x^10 - 192*x^9 + 2255*x^8 - 8416*x^7 + 20394*x^6 - 2272*x^5 + 143792*x^4 - 271424*x^3 + 129376*x^2 + 327680*x + 1048576, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^12 - 4*x^11 + 34*x^10 - 192*x^9 + 2255*x^8 - 8416*x^7 + 20394*x^6 - 2272*x^5 + 143792*x^4 - 271424*x^3 + 129376*x^2 + 327680*x + 1048576);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^12 - 4*x^11 + 34*x^10 - 192*x^9 + 2255*x^8 - 8416*x^7 + 20394*x^6 - 2272*x^5 + 143792*x^4 - 271424*x^3 + 129376*x^2 + 327680*x + 1048576);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$D_{12}$ (as 12T12):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 24
The 9 conjugacy class representatives for $D_{12}$
Character table for $D_{12}$

Intermediate fields

\(\Q(\sqrt{-646}) \), 3.1.152.1, 4.0.113509952.4, 6.0.17253512704.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Galois closure: deg 24
Degree 12 sibling: 12.2.9621842244611119611904.1
Minimal sibling: 12.2.9621842244611119611904.1

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R ${\href{/padicField/3.12.0.1}{12} }$ ${\href{/padicField/5.2.0.1}{2} }^{5}{,}\,{\href{/padicField/5.1.0.1}{1} }^{2}$ ${\href{/padicField/7.12.0.1}{12} }$ ${\href{/padicField/11.2.0.1}{2} }^{5}{,}\,{\href{/padicField/11.1.0.1}{1} }^{2}$ ${\href{/padicField/13.3.0.1}{3} }^{4}$ R R ${\href{/padicField/23.12.0.1}{12} }$ ${\href{/padicField/29.12.0.1}{12} }$ ${\href{/padicField/31.2.0.1}{2} }^{5}{,}\,{\href{/padicField/31.1.0.1}{1} }^{2}$ ${\href{/padicField/37.4.0.1}{4} }^{3}$ ${\href{/padicField/41.2.0.1}{2} }^{5}{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ ${\href{/padicField/43.2.0.1}{2} }^{6}$ ${\href{/padicField/47.2.0.1}{2} }^{6}$ ${\href{/padicField/53.3.0.1}{3} }^{4}$ ${\href{/padicField/59.6.0.1}{6} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.2.3.2$x^{2} + 4 x + 10$$2$$1$$3$$C_2$$[3]$
2.2.3.2$x^{2} + 4 x + 10$$2$$1$$3$$C_2$$[3]$
2.2.3.2$x^{2} + 4 x + 10$$2$$1$$3$$C_2$$[3]$
2.2.3.2$x^{2} + 4 x + 10$$2$$1$$3$$C_2$$[3]$
2.2.3.2$x^{2} + 4 x + 10$$2$$1$$3$$C_2$$[3]$
2.2.3.2$x^{2} + 4 x + 10$$2$$1$$3$$C_2$$[3]$
\(17\) Copy content Toggle raw display 17.12.9.1$x^{12} + 4 x^{10} + 56 x^{9} + 57 x^{8} + 168 x^{7} + 1044 x^{6} - 11256 x^{5} + 3356 x^{4} + 10080 x^{3} + 97736 x^{2} + 58576 x + 57252$$4$$3$$9$$C_{12}$$[\ ]_{4}^{3}$
\(19\) Copy content Toggle raw display 19.2.1.1$x^{2} + 38$$2$$1$$1$$C_2$$[\ ]_{2}$
19.2.1.1$x^{2} + 38$$2$$1$$1$$C_2$$[\ ]_{2}$
19.2.1.1$x^{2} + 38$$2$$1$$1$$C_2$$[\ ]_{2}$
19.2.1.1$x^{2} + 38$$2$$1$$1$$C_2$$[\ ]_{2}$
19.2.1.1$x^{2} + 38$$2$$1$$1$$C_2$$[\ ]_{2}$
19.2.1.1$x^{2} + 38$$2$$1$$1$$C_2$$[\ ]_{2}$

Artin representations

Label Dimension Conductor Artin stem field $G$ Ind $\chi(c)$
* 1.1.1t1.a.a$1$ $1$ \(\Q\) $C_1$ $1$ $1$
1.152.2t1.b.a$1$ $ 2^{3} \cdot 19 $ \(\Q(\sqrt{-38}) \) $C_2$ (as 2T1) $1$ $-1$
1.17.2t1.a.a$1$ $ 17 $ \(\Q(\sqrt{17}) \) $C_2$ (as 2T1) $1$ $1$
* 1.2584.2t1.b.a$1$ $ 2^{3} \cdot 17 \cdot 19 $ \(\Q(\sqrt{-646}) \) $C_2$ (as 2T1) $1$ $-1$
* 2.152.3t2.b.a$2$ $ 2^{3} \cdot 19 $ 3.1.152.1 $S_3$ (as 3T2) $1$ $0$
* 2.43928.6t3.b.a$2$ $ 2^{3} \cdot 17^{2} \cdot 19 $ 6.2.113509952.3 $D_{6}$ (as 6T3) $1$ $0$
* 2.43928.4t3.b.a$2$ $ 2^{3} \cdot 17^{2} \cdot 19 $ 4.2.746776.1 $D_{4}$ (as 4T3) $1$ $0$
* 2.43928.12t12.a.b$2$ $ 2^{3} \cdot 17^{2} \cdot 19 $ 12.0.1462520021180890181009408.1 $D_{12}$ (as 12T12) $1$ $0$
* 2.43928.12t12.a.a$2$ $ 2^{3} \cdot 17^{2} \cdot 19 $ 12.0.1462520021180890181009408.1 $D_{12}$ (as 12T12) $1$ $0$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.