Properties

Label 12.0.14624633760251904.47
Degree $12$
Signature $[0, 6]$
Discriminant $2^{22}\cdot 3^{20}$
Root discriminant $22.24$
Ramified primes $2, 3$
Class number $2$
Class group $[2]$
Galois group 12T183

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![160, 288, -48, -112, 216, 0, -120, 72, 0, -28, 18, -6, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^12 - 6*x^11 + 18*x^10 - 28*x^9 + 72*x^7 - 120*x^6 + 216*x^4 - 112*x^3 - 48*x^2 + 288*x + 160)
 
gp: K = bnfinit(x^12 - 6*x^11 + 18*x^10 - 28*x^9 + 72*x^7 - 120*x^6 + 216*x^4 - 112*x^3 - 48*x^2 + 288*x + 160, 1)
 

Normalized defining polynomial

\( x^{12} - 6 x^{11} + 18 x^{10} - 28 x^{9} + 72 x^{7} - 120 x^{6} + 216 x^{4} - 112 x^{3} - 48 x^{2} + 288 x + 160 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $12$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(14624633760251904=2^{22}\cdot 3^{20}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $22.24$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $\frac{1}{2} a^{3}$, $\frac{1}{2} a^{4}$, $\frac{1}{2} a^{5}$, $\frac{1}{12} a^{6} - \frac{1}{6} a^{3} + \frac{1}{3}$, $\frac{1}{12} a^{7} - \frac{1}{6} a^{4} + \frac{1}{3} a$, $\frac{1}{24} a^{8} + \frac{1}{6} a^{5} - \frac{1}{3} a^{2}$, $\frac{1}{24} a^{9} + \frac{1}{3}$, $\frac{1}{48} a^{10} - \frac{1}{2} a^{2} - \frac{1}{3} a$, $\frac{1}{336} a^{11} + \frac{1}{168} a^{10} + \frac{1}{56} a^{9} + \frac{1}{56} a^{8} - \frac{1}{42} a^{7} + \frac{1}{42} a^{6} - \frac{1}{6} a^{4} - \frac{4}{21} a^{3} - \frac{4}{21} a^{2} - \frac{1}{3} a - \frac{10}{21}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}$, which has order $2$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $5$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( \frac{13}{336} a^{11} - \frac{43}{168} a^{10} + \frac{6}{7} a^{9} - \frac{23}{14} a^{8} + \frac{31}{28} a^{7} + \frac{83}{42} a^{6} - 6 a^{5} + \frac{9}{2} a^{4} + \frac{197}{42} a^{3} - \frac{157}{21} a^{2} + \frac{14}{3} a + \frac{157}{21} \) (order $4$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 4593.81125096 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

12T183:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 720
The 11 conjugacy class representatives for S_6(12)
Character table for S_6(12)

Intermediate fields

\(\Q(\sqrt{-1}) \), 6.0.60466176.4

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 6 siblings: data not computed
Degree 10 sibling: data not computed
Degree 12 sibling: data not computed
Degree 15 siblings: data not computed
Degree 20 siblings: data not computed
Degree 30 siblings: data not computed
Degree 36 sibling: data not computed
Degree 40 siblings: data not computed
Degree 45 sibling: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R ${\href{/LocalNumberField/5.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{3}$ ${\href{/LocalNumberField/13.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/17.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{6}$ ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{3}$ ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/37.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/41.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{3}$ ${\href{/LocalNumberField/53.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.4.4.1$x^{4} + 8 x^{2} + 4$$2$$2$$4$$C_2^2$$[2]^{2}$
2.8.18.66$x^{8} + 6 x^{4} + 4 x^{3} + 2$$8$$1$$18$$S_4\times C_2$$[2, 8/3, 8/3]_{3}^{2}$
$3$3.12.20.32$x^{12} + 27 x^{11} + 18 x^{10} + 6 x^{9} - 63 x^{8} + 9 x^{7} - 3 x^{6} + 54 x^{5} + 54 x^{4} - 117 x^{3} + 54 x^{2} + 27 x - 45$$6$$2$$20$12T34$[9/4, 9/4]_{4}^{2}$