Properties

Label 12.0.14560594398949509.3
Degree $12$
Signature $[0, 6]$
Discriminant $3^{7}\cdot 367^{5}$
Root discriminant $22.23$
Ramified primes $3, 367$
Class number $1$
Class group Trivial
Galois group $\GL(2,Z/4)$ (as 12T49)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![12, -61, 175, -335, 491, -548, 459, -260, 101, -35, 18, -6, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^12 - 6*x^11 + 18*x^10 - 35*x^9 + 101*x^8 - 260*x^7 + 459*x^6 - 548*x^5 + 491*x^4 - 335*x^3 + 175*x^2 - 61*x + 12)
 
gp: K = bnfinit(x^12 - 6*x^11 + 18*x^10 - 35*x^9 + 101*x^8 - 260*x^7 + 459*x^6 - 548*x^5 + 491*x^4 - 335*x^3 + 175*x^2 - 61*x + 12, 1)
 

Normalized defining polynomial

\( x^{12} - 6 x^{11} + 18 x^{10} - 35 x^{9} + 101 x^{8} - 260 x^{7} + 459 x^{6} - 548 x^{5} + 491 x^{4} - 335 x^{3} + 175 x^{2} - 61 x + 12 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $12$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(14560594398949509=3^{7}\cdot 367^{5}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $22.23$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 367$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{53} a^{8} - \frac{4}{53} a^{7} + \frac{8}{53} a^{6} - \frac{10}{53} a^{5} + \frac{19}{53} a^{4} - \frac{26}{53} a^{3} + \frac{23}{53} a^{2} - \frac{11}{53} a + \frac{23}{53}$, $\frac{1}{53} a^{9} - \frac{8}{53} a^{7} + \frac{22}{53} a^{6} - \frac{21}{53} a^{5} - \frac{3}{53} a^{4} + \frac{25}{53} a^{3} - \frac{25}{53} a^{2} - \frac{21}{53} a - \frac{14}{53}$, $\frac{1}{53} a^{10} - \frac{10}{53} a^{7} - \frac{10}{53} a^{6} + \frac{23}{53} a^{5} + \frac{18}{53} a^{4} - \frac{21}{53} a^{3} + \frac{4}{53} a^{2} + \frac{4}{53} a + \frac{25}{53}$, $\frac{1}{159} a^{11} - \frac{1}{159} a^{10} + \frac{1}{159} a^{9} + \frac{5}{159} a^{7} + \frac{29}{159} a^{6} - \frac{20}{159} a^{5} + \frac{14}{53} a^{4} + \frac{2}{159} a^{3} - \frac{7}{159} a^{2} - \frac{4}{159} a - \frac{7}{53}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $5$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 13723.3534743 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$\GL(2,Z/4)$ (as 12T49):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 96
The 14 conjugacy class representatives for $\GL(2,Z/4)$
Character table for $\GL(2,Z/4)$

Intermediate fields

3.3.1101.1, 6.0.3636603.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 12 siblings: 12.6.5343738144414469803.1, 12.0.14560594398949509.2
Degree 16 siblings: Deg 16, 16.0.1298528369092716162129.1
Degree 24 siblings: data not computed
Degree 32 sibling: data not computed
Arithmetically equvalently sibling: 12.0.14560594398949509.4

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }^{2}$ R ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{3}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/37.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{3}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$3$$\Q_{3}$$x + 1$$1$$1$$0$Trivial$[\ ]$
$\Q_{3}$$x + 1$$1$$1$$0$Trivial$[\ ]$
3.2.1.1$x^{2} - 3$$2$$1$$1$$C_2$$[\ ]_{2}$
3.8.6.2$x^{8} + 4 x^{7} + 14 x^{6} + 28 x^{5} + 43 x^{4} + 44 x^{3} + 110 x^{2} + 92 x + 22$$4$$2$$6$$D_4$$[\ ]_{4}^{2}$
367Data not computed