Normalized defining polynomial
\( x^{12} - 6 x^{11} + 8 x^{10} + 15 x^{9} - 24 x^{8} - 60 x^{7} + 80 x^{6} + 99 x^{5} + 4 x^{4} - 306 x^{3} - 108 x^{2} + 297 x + 171 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(14560594398949509=3^{7}\cdot 367^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $22.23$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 367$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{12} a^{8} + \frac{1}{6} a^{7} - \frac{1}{12} a^{6} + \frac{5}{12} a^{5} - \frac{1}{3} a^{4} + \frac{5}{12} a^{3} + \frac{1}{12} a^{2} - \frac{1}{4} a + \frac{1}{4}$, $\frac{1}{12} a^{9} + \frac{1}{12} a^{7} + \frac{1}{12} a^{6} + \frac{1}{3} a^{5} - \frac{5}{12} a^{4} + \frac{1}{4} a^{3} - \frac{5}{12} a^{2} + \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{2208} a^{10} - \frac{5}{2208} a^{9} - \frac{1}{368} a^{8} + \frac{9}{368} a^{7} + \frac{7}{184} a^{6} - \frac{77}{368} a^{5} + \frac{535}{1104} a^{4} + \frac{911}{2208} a^{3} + \frac{39}{736} a^{2} + \frac{37}{184} a - \frac{239}{736}$, $\frac{1}{68448} a^{11} + \frac{5}{34224} a^{10} + \frac{893}{22816} a^{9} + \frac{451}{17112} a^{8} - \frac{7373}{34224} a^{7} - \frac{7421}{34224} a^{6} - \frac{6617}{17112} a^{5} + \frac{7945}{68448} a^{4} - \frac{4793}{34224} a^{3} + \frac{23359}{68448} a^{2} + \frac{9525}{22816} a + \frac{10767}{22816}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{55}{2208} a^{10} + \frac{275}{2208} a^{9} - \frac{37}{368} a^{8} - \frac{127}{368} a^{7} + \frac{29}{184} a^{6} + \frac{463}{368} a^{5} - \frac{721}{1104} a^{4} - \frac{3185}{2208} a^{3} - \frac{1593}{736} a^{2} + \frac{587}{184} a + \frac{2657}{736} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 13723.3534743 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$\GL(2,Z/4)$ (as 12T52):
| A solvable group of order 96 |
| The 14 conjugacy class representatives for $\GL(2,Z/4)$ |
| Character table for $\GL(2,Z/4)$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.3.1101.1, 6.0.3636603.4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 12 siblings: | 12.6.5343738144414469803.1, 12.0.14560594398949509.3, 12.0.14560594398949509.4 |
| Degree 16 siblings: | Deg 16, 16.0.1298528369092716162129.1 |
| Degree 24 siblings: | data not computed |
| Degree 32 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.3.1 | $x^{4} + 3$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 367 | Data not computed | ||||||